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Abstract

Novel real-time depth acquisition devices, like Time-Of-
Flight (ToF) cameras or Microsoft Kinect, allow a very fast
and simple acquisition of 3D views. These sensors have
been used in many applications but their employment for
3D scanning purposes is a very challenging task due to the
limited accuracy and reliability of their data. In this pa-
per we present a 3D acquisition pipeline explicitly targeted
to ToF cameras. The proposed scheme aims at obtaining
a reliable reconstruction that is not affected by the limiting
issues of these cameras and is at the same time simple and
fast in order to allow to use the ToF sensor as an hand-
held scanner. In order to achieve these targets an ad-hoc
pre-processing stage is used together with a modified ver-
sion of the ICP algorithm that is able to recognize the most
reliable and relevant points and to use only them for reg-
istration purposes. Furthermore, ToF cameras have also
been combined with standard color cameras in order to ac-
quire colored 3D models. Experimental results show how
the proposed approach is able to produce reliable 3D re-
constructions from the ToF data.

1. Introduction
The reconstruction of the three-dimensional shape of

complex objects has always been a very challenging task.
Most approaches rely on the acquisition of a set of differ-
ent 3D views of the object and then fuse such views into a
complete 3D shape representation. Both tasks are very chal-
lenging. The acquisition of the 3D views has been tradition-
ally solved by 3D structured light scanners but these devices
are very expensive, slow and cumbersome to use. Passive
methods, most notably stereo vision approaches [10], have
also been employed but they are not very robust. The re-
cent introduction of real-time 3D acquisition devices, like
ToF cameras and the Kinect, has made the acquisition of
3D views much faster and simpler than before. Unfortu-
nately these devices have also several limiting issues, like
high noise level, limited resolution or artifacts in proximity
of edges, that the algorithms employed for the reconstruc-

tion of 3D shapes from their data must take into account.

While these devices have been widely used in setups
with a fixed camera acquiring moving people or objects for
dynamic 3D acquisition and human motion tracking [11],
their employment for the reconstruction of static 3D scenes
is a novel research field. Among the research projects which
have investigated this task, Microsoft’s KinectFusion [7]
is probably the most relevant. In this project each frame
acquired by the Kinect is registered in real-time using the
ICP algorithm [1] over the complete 3D scene description
reconstructed by using a variation of the volumetric trun-
cated signed distance function (TSDF) [3]. Similar results
can also be obtained using Time-Of-Flight (ToF) cameras
in place of the Kinect. For example in [2] the data acquired
by a MESA SR4000 ToF camera are firstly improved with a
super-resolution algorithm and then the different 3D views
are aligned and combined together. The latter task uses a
probabilistic approach based on Expectation Maximization
(EM). Color cameras can also be employed together with
the depth sensors in order to improve the reconstruction ac-
curacy. In [6] the data acquired by the ToF sensor is firstly
used to reconstruct a coarse 3D representation of the scene
by a volumetric approach. Then the data coming from mul-
tiple color cameras are used in order to improve the recon-
struction by enforcing a photoconsistency measure and sil-
houette constraints. Furthermore the first commercial ap-
plications exploiting the Kinect for 3D reconstruction, like
Reconstructme [8] and Kinect@home [9] are starting to ap-
pear.

This work presents a novel 3D reconstruction pipeline
to obtain textured 3D models in real-time from the data ac-
quired by the combination of a ToF camera with a standard
color camera. As [7] and other schemes, the proposed ap-
proach exploits the ICP algorithm but, with respect to the
previous approaches, we introduce new elements in order
to adapt the reconstruction pipeline to ToF data. Mainly an
ad-hoc pre-processing step is used in order to reduce the
noise level and to remove the most common artifacts typ-
ically affecting in the data acquired by ToF cameras. The
paper is organized as follows: Section 2 introduces the pro-
posed acquistion system, then the proposed 3D reconstruc-
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tion pipeline is described in detail in Section 3. Section 4
presents the experimental results and finally Section 5 draws
the conclusions.

a)

b)
Figure 1. Employed acquisition setup. a) ToF camera and standard
color camera; b) extended version with 2 color cameras.

2. Proposed acquisition system
Since a Time-Of-Flight camera can not acquire color in-

formation (except for the reflectivity in the employed IR
band) we combined it with a standard color camera in order
to have a system capable of acquiring both geometry and
color information. In particular the used acquisition setup,
depicted in Figure 1, is made by a MESA SR4000 Time-
Of-Flight camera together with a Basler Scout A1000 color
camera. A second color camera can also be added to the
setup in order to improve the calibration accuracy and to re-
duce occlusion issues. In order to use this combined setup
the two devices need to be precisely calibrated together. For
this purpose we used a variation of the method proposed in
[4]. Furthermore if a second camera is available it is also
possible to build two different 3D point clouds, one from
the checkerboard corners acquired by the ToF sensor and
the other obtained from the two color cameras considered
as a stereo system. An iterative approach can then used
to find the extrinsic parameters that correspond to the best
alignment between the two point clouds. After calibrating
the two devices, for each depth frame each 3D sample pi
acquired by the ToF camera can be reprojected to a location
pcam = (u, v) in the color frame. In this way a color value
can be associated to each 3D point by using bilinear inter-
polation on the color samples surrounding (u, v). Finally to
avoid issues on samples visible from the ToF viewpoint but
not from the camera one, the Z-buffer algorithm is used in

order to check for occlusions (i.e., two 3D points can be as-
sociated to the same 2D location and the color value refers
only to the 3D point closer to the camera).

3. Geometry reconstruction pipeline
The proposed 3D reconstruction pipeline, shown in Fig-

ure 2, is made of 4 basic steps: the pre-processing of
depth information acquired by the ToF; the extraction of the
salient points that will be used for the registration process;
the alignment (registration) of the views; and finally the sur-
face simplification and polishing.

Figure 2. Architecture of the proposed system

Figure 3. Sample view of the ball scene from the experimental
results showing some examples of the artifacts in the data acquired
by the ToF sensor.

3.1. Pre-processing of depth information

If compared with the data acquired by standard struc-
tured light or 3D laser scanners the 3D views acquired by



ToF sensors are characterized by limited accuracy, high
noise level and by the presence of many erroneous depth
samples. Fig. 3 shows an example of point cloud acquired
by the ToF sensor: note the large amount of erroneous
points. On both sides of the object there are many dangling
points due to edge artifacts (basically, due to the limited res-
olution of the ToF, many edge pixels capture the reflected
light from both foreground and background regions and the
measured depth is a weighted average of the two distances).
For these reasons they can not be directly sent to the recon-
struction pipeline, but need a cleaning and refinement stage
in order to remove unreliable data that can then affect the
registration and reconstruction stages.

The proposed pre-processing algorithm is made by 2 ba-
sic steps. In the first a bilateral filter [12] is applied to the
depth information acquired by the ToF sensor in order to re-
duce the noise but at the same time preserve the edges. The
edge smoothing behavior property of standard low-pass fil-
tering would create severe artifacts at the objects’ bound-
aries, while the bilateral filtering scheme ensures that the
shape boundaries are correctly preserved.

In the next step from the depth map and the calibration
information we build the corresponding set of 3D points
pi = (Xi, Yi, Zi), i = 1, .., N . Then we consider the win-
dow Wpi of size k × k surrounding each sample pi in the
depth map (for the experimental results we set k = 3). We
compute the set Spi

= {p′ ∈ Wpi
∧ |Zp′ − Zpi

| < Tz} of
the samples in the window with a depth value similar to the
one of the considered point pi. If the number of samples in
Spi is large enough (|Spi | > 0.8|Wpi |) the point pi is con-
sidered valid, otherwise the point is on a too slanted surface
or an isolated point and it is discarded. Note how this quite
strict thresholding is necessary due to the high unreliabil-
ity of ToF data, specially in proximity of edges, where the
sensor pixel captures light coming from different surfaces
at different distances thus providing unreliable depth values
as described in [5] and shown in Fig. 3.

3.2. Extraction of salient points

The Iterative Closest Points (ICP) algorithm [1] requires
to select a subset of the acquired points to compute the ro-
totranslation matrix between a pair of views. This step is
particularly critical in the proposed setup since the data ac-
quired from the ToF sensor have many unreliable points and
it is not possible to process in real-time too large amounts of
samples. In order to obtain an accurate real time reconstruc-
tion it is necessary to extract a small subset of the original
points which is both reliable and meaningful for registration
purposes.

To achieve this target we used a saliency measure [13]
that computes the usefulness of each point for registration
purposes by taking into account geometry information in
a neighborhood of the considered point. The idea is that

the more distinctive points (i.e. the ones in regions of high
curvature) are the most salient ones.

In particular we compute the normal np to the surface at
each point p and then we associate to each sample p the set

Ap = {(p′ ∈Wp) ∧ (np′ · np > Tg)} (1)

of the points for which the surface normals np′ form an an-
gle smaller than arccos(Tg) with the normal np of point p.
The area of Ap is therefore inversely proportional to the lo-
cal curvature of the surface surrounding the selected point.
Note that the point p itself is included in the computation in
order to ensure that |Ap| ≥ 1. The geometric distinctivity
measure is computed as the inverse of the cardinality of Ap:

Dg(p) =
1

|Ap|
(2)

Note that since 1 ≤ Ap ≤ k2 (where k is the size of the win-
dow Wp), Dg(p) is included in the range 1/k2 ≤ Dg(p) ≤
1, i.e. Dg(p) = 1 corresponds to the most salient points
and Dg(p) = 1/k2 to quite flat regions. The idea is that
points corresponding to high curvature regions can be con-
sidered more distinctive since they force tighter bounds on
the surface alignment. Fig. 4 shows an example of the com-
putation of geometric distinctivity on a sample 3D view for
different values of the threshold Tg .

Figure 4. Geometric saliency corresponding to different values of
Tg . Darker points correspond to larger values of Dg(p)

In order to build the set of relevant points P that will
be used to register the considered view we selected the Nd

more distinctive points (for the experimental results we set
Nd = 500).

3.3. Real-time 3D geometry registration

The ToF sensor is used as an hand-held scanner and is
moved around the scene in order to acquire I frames each
corresponding to a 3D view Vi, i = 1, .., N of the scene.
Let us denote with Vi the set of points relative to view Vi.
The approach presented in the previous section can be used
to extract the set Pi of the relevant points in view Vi that
are then used as input for the registration algorithm. The
proposed algorithm is based on the ICP method and works
in the following way:

1. The relevant points Pi of view Vi are extracted by the
method of Section 3.2.



2. The ICP algorithm is used to register the relevant
points Pi over the previously aligned view V r

i−1 of
the scene. Finally, once the ICP algorithm has con-
verged to a rotation Ri and a translation ti, view Vi

is rototranslated according to Ri and ti and the roto-
translated set of points Vr

i is added to the current scene
reconstruction S′i.

3. The resulting point cloud is polished using the method
of Section 3.4 in order to produce the 3D scene de-
scription Si.

4. The procedure is iterated until all the acquired views
are processed.

It is also interesting to notice that the use of salient points
only for the new view that is added at each step in the reg-
istration process does not only allow to drastically reduce
the computation time but also to improve the registration
accuracy (specially if compared with random subsampling
approaches) since the points used in the registration process
are the most relevant ones.

3.4. Fusion of the geometry and color

After registering the new view over the previous acquired
data it is necessary to fuse together the two point clouds in
order to reduce the number of samples and to produce the
final surface. For this task we firstly create a merged point
cloud containing all the samples from both Vi and Si−1.
Then each point of the set Vi ∪ Si−1 is analyzed and if an-
other point with a distance smaller than a threshold tres (the
threshold depends on the desired final model resolution) is
found then the two points are collapsed together into a sin-
gle 3D point.

Finally, since the aim of the proposed reconstruction
technique is to build colored 3D models, it is also neces-
sary to add color data to the acquired geometry. A color
value is associated to each sample in each acquired view
using the method described in Section 2. In the fusion step
it is necessary to assign a color value to the samples ob-
tained by merging the points coming from different views.
For this task we consider the normals npi corresponding to
the 3D samples that are going to be merged together with
the viewing direction vj corresponding to the view Vj in
which each point pi has been acquired and we assign to the
merged sample the color value corresponding to the sample
for which −(npi · vj) is maximum.

4. Experimental results
In order to evaluate the effectiveness of the proposed ap-

proach we acquired several different scenes by the proposed
acquisition setup, made a by a MESA SR4000 ToF cam-
era (with a resolution of 176 × 144) together with a Basler
Scout A1000 color camera (with a 1034 × 779 resolution)

as shown in Fig. 1. We acquired about 150 frames at 30fps
for each considered scene. Note that this means that each
scene has been acquired in just about 5sec.

a) b)

c) d)

e) f)
Figure 6. Reconstruction of the boxes scene: a) Color view of the
scene; b) Depth map representing one view acquired by the ToF
sensor (contrast-stretched for visualization purposes); c) Snap-
shot of the obtained point cloud; d) Snapshot of the obtained point
cloud from another viewpoint; e) Snapshot of the 3D model ob-
tained by simplifying and triangulating the point cloud; f) Snap-
shot of the 3D model from another viewpoint.

Fig. 5 shows a first example relative to the reconstruc-
tion of a ball. The ball has been acquired by moving the
acquisition setup on a circle around it (for this reason the
top and bottom area are missing since they have not been
acquired). The geometry reconstruction of the ball in Fig. 5
is not trivial, in spite of the simplicity of the object’s shape,
as its regularity and symmetry properties may lead to align-
ment errors when the scene points are randomly sampled.
By using relevant points along the table edge as the input of
Section 3.2 algorithm, instead, the scene geometry in Fig. 5
is correctly reconstructed. The basic shape of the ball is
recognized and the texture is correctly aligned on the ge-



a) b) c)
Figure 5. Reconstruction of a ball scene. a) Color view of the scene; b) Snapshot of the obtained 3D model; c) Another snapshot of the
model rendered from a different viewpoint more to the top showing the alignment of the different views.

ometry, even if, as expected, the precision is below the one
of laser or structured light scanners. However consider that
the ToF camera has an accuracy of the order of 1cm on flat
surfaces and quite lower in many practical situations and
that the acquisition time is just 5sec for the whole scene. By
comparing Fig. 3 with the reconstruction results of Figs. 5b)
and Figs. 5c) it is possible to appreciate that the proposed
method can cope well with the acquired data reliability and
noise problems previously mentioned. Another issue is that
there is a small error accumulation due to the lack of a fi-
nal global alignment step. In this work this step has not
been included in order to favor fast on-line reconstruction,
however a further off-line post-processing stage including
global alignment (inevitably much slower than the current
version) is under development.

a) b)
Figure 7. Reconstruction of a teddy bear object. a) Color view of
the teddy-bear; b) Obtained 3D reconstruction.

Fig. 6 shows the reconstruction of another scene made
by a set of boxes of different size. Also in this case, as
shown in Figs. 6c) and 6d) the objects in the scene are cor-
rectly reconstructed. Considering that the data provided by
the ToF sensor to the reconstruction algorithm is a set of 3D
views of the type shown in Fig. 6b), the algorithm appears
capable to produce a 3D reconstruction that is not affected
too much by the artifacts present in the ToF data. In par-
ticular it is worth noting how color information, that comes
from a different sensor, is correctly aligned and fused on

the geometry. Fig. 7 instead refers to the reconstruction of
a teddy-bear. The shape of the object in this case is more
complex and less regular but still the reconstruction is cor-
rect, most details of the teddy bear shape are recognized by
the algorithm. Note also how the color alignment is cor-
rect. Probably the most evident artifact is the hole on the
foot of the teddy-bear, due to a well-known drawback of the
ToF cameras, i.e. the fact that they are not able to acquire
very low reflective surfaces (such as black surfaces) since
the reflected signal is too weak for a correct reconstruction.
Another scene including different objects is shown in Fig. 8.
Finally Fig. 9 shows the reconstruction of a person’s shape.

Figure 8. Reconstruction of the baby and boxes scene.

5. Conclusions
In this paper we proposed a novel 3D reconstruction

pipeline explicitly targeted to the data acquired by ToF cam-
eras exploiting also the side information from color cam-
eras. The proposed approach has demonstrated to be very
robust against the noise and the other issues of the data ac-
quired by these cameras. The reliable extraction of salient



Figure 9. Reconstruction of a person

points has allowed to use a smaller number of points in the
registration process and so to speed-up the reconstruction
algorithm. Experimental results have shown how the pro-
posed approach allows to use the ToF camera as an hand-
held scanner in order to produce accurate 3D reconstruc-
tions. Further research will be devoted to the development
of a post-processing optional stage that is able to improve
the reconstruction accuracy by the introduction of a global
alignment step. The proposed approach is also very well-
suited to be applied to the data produced by Microsoft’s
Kinect sensor and we are building a variation of the cur-
rent 3D reconstruction system explicity targeted on this de-
vice. This is a very interesting research direction since the
simplicity and speed of the proposed acquisition pipeline
combined with the low cost of the Kinect sensor will allow
unskilled users to build 3D models without complex and
expensive ad-hoc hardware.
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