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Abstract—Novel real-time depth acquisition devices, like Mi-
crosoft Kinect, allow a very fast and simple acquisition of 3D
views. These sensors have been used in many applications but
their employment for 3D scanning purposes is a very challenging
task due to the limited accuracy and reliability of their data.
In this paper we present a 3D reconstruction pipeline explicitly
targeted to the Kinect. The proposed scheme aims at obtaining a
reliable reconstruction that is not affected by the limiting issues
of these cameras and is at the same time simple and fast in order
to allow to use the Kinect sensor as an handheld scanner. In order
to achieve these targets a novel algorithm for the extraction of
salient points exploiting both depth and color data is firstly used.
The extracted points are then used within a modified version
of the ICP algorithm that exploits both geometry and color
distances to precisely align the views produced by the Kinect
even when the geometry information is not sufficient to constrain
the registration. Experimental results show how the proposed
approach is able to produce reliable 3D reconstructions from the
Kinect data.

I. INTRODUCTION

The reconstruction of the three-dimensional shape of com-
plex objects has always been a very challenging task. Most
approaches rely on the acquisition of a set of different 3D
views of the object and then fuse the views into a complete
3D shape representation. The acquisition of the 3D views
has traditionally been considered a difficult problem but the
recent introduction of real-time 3D acquisition devices, like the
Kinect or Time-Of-Flight cameras, has made the acquisition of
3D views much faster and simpler than before. Unfortunately
these devices have also several limiting issues (as pointed
out in [1], [2]), like high noise level, limited resolution and
artifacts in proximity of edges, that must be taken into account
in reconstruction algorithms. On the other hand their ability to
acquire data at interactive frame-rates makes possible to use
a very large number of views. This represents both a strength
point, since the views are much closer than the ones used in
typical 3D registration pipelines, but also a critical point for
computation and memory requirements.

The reconstruction of static 3D scenes with consumer depth
cameras like the Kinect is a novel research field. Among the
research projects which have investigated this task, Microsoft’s
KinectFusion [3] is probably the most relevant. In this project
each frame acquired by the Kinect is registered in real-time
using the ICP algorithm [4] over the complete 3D scene
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description reconstructed by using a variation of the volumetric
truncated signed distance function (TSDF). The approach of
KinectFusion permits an accurate reconstruction, but the large
amount of memory needed by the approach limits its appli-
cation to small scenes, e.g., the implementation in the PCL
library (KinFu [5]) is limited to a 3x3[m] area. Kinect Fusion
has also been extended in the Kintinuous project [6]. In another
recent work [7] both geometric and visual features are used
for the reconstruction of indoor environments from the Kinect
data. Another research project [8] aims at capturing full 3D
human body models using 3 Kinects. This approach is able to
register the various body parts under non-rigid deformations.
Furthermore the first commercial applications exploiting the
Kinect for 3D reconstruction are starting to appear, e.g.,
Reconstructme [9] or Skanect [10]. These applications are
typically able to capture a full color 3d model of objects,
people or rooms, even if the accuracy of the reconstruction
is not always satisfying.

Two approaches for the registration of 3D views are de-
scribed and evaluated in [11]. The first approach is based on
RGB images and estimates a sensor pose using image features,
while the second uses only geometrical information. The re-
sults show that image-based registration method is particularly
suitable for scenes with texture, while the object space-based
method is able to work on scenes without texture but requires a
sufficient amount of geometric information in the scene. This
complementary behavior suggests that geometry and texture
should be combined in order to provide a highly reliable
method, as proposed in this paper.

This work presents a novel 3D reconstruction pipeline to
obtain textured 3D models from the data acquired by the
Kinect camera or similar devices (e.g., Asus Xtion or Time-
Of-Flight cameras). As [3] and other schemes, the proposed
approach uses the ICP algorithm but, with respect to the
previous approaches, introduces new elements in order to
adapt the reconstruction pipeline to the Kinect data and to
exploit the color camera information. Firstly an ad-hoc pre-
processing step is used in order to reduce the noise level and
to remove the most common artifacts typically affecting in
the data acquired by the Kinect. Then the relevant points are
extracted and finally a modified version of the ICP algorithm
is employed. An important novel element, not present in
previous works, is the use of color information acquired by
the video-camera not only for texture reconstruction but also
to improve the extraction of salient points and the geometry
reconstruction.



II. GEOMETRY RECONSTRUCTION PIPELINE

The proposed 3D reconstruction pipeline, shown in Fig. 1,
is made by 4 basic steps: in the first step the current depth map
is extracted from the Kinect and registered together with color
data in order to associate to each pixel a 3D colored point. The
depth information acquired by the Kinect is also pre-processed
to obtain more accurate results. Then salient points that will be
used for the registration process are extracted from the point
cloud; in the next step the views are aligned together by a
modified ICP algorithm; finally post-processing is applied for
surface simplification and polishing.
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Fig. 1. Architecture of the proposed system

A. Pre-processing of depth information

Before acquisition the system made by the depth and color
camera of the Kinect is calibrated by the approach of [12]. The
calibration parameters of the IR (depth) and RGB cameras and
the relative position between them is used to reproject color
data over depth information. Color data is also converted to the
CIELAB color space. In this way the acquisition supplies a set
of colored 3D points pi = (Xpi

, Ypi
, Zpi

, Lpi
, api

, bpi
), i =

1, .., N , where (Xpi
, Ypi

, Zpi
) are the 3D coordinates and

(Lpi
, api

, bpi
) the color components in the CIELAB space.

It is worth noting that, if compared with the data acquired
by standard 3D laser scanners, the 3D views acquired by the
Kinect are characterized by limited accuracy, high noise level
and by the presence of many erroneous depth samples. The
proposed pre-processing algorithm is made by 2 basic steps. In
the first a bilateral filter [13] is applied to the depth information
acquired by the Kinect in order to reduce noise but at the same
time preserving the edges. Then we consider a moving window
Wpi

of size k×k around each sample pi of the depth map ( the
experimental results of Section III were obtained with k = 3).
We compute the set Spi

= {p′ ∈Wpi
∧ |Zp′ − Zpi

| < Tz} of
the samples in the window with a depth value similar to the
one of the considered point pi. If the number of samples in Spi

is large enough (|Spi
| > 0.8|Wpi

|) the point pi is considered
valid, otherwise it is discarded since the point is on a too
slanted surface or it is an isolated point. This thresholding is
used to filter out unreliable depth values.

Finally the surface normals are estimated [14] for each point
(they will play an important role for salient point extraction),

by robust and efficient border- and depth-dependent smooth-
ing.

B. Extraction of salient points

The registration algorithm requires to select a subset of the
acquired points to compute the rototranslation matrix between
pairs of views. This step is particularly critical in the proposed
setup since the data acquired from the Kinect have many
unreliable points and furthermore it is not possible to process
in real-time too large amounts of samples. In order to obtain
an accurate real-time reconstruction it is necessary to extract a
small subset of the original points both reliable and meaningful
for registration purposes.

To achieve this target we introduce a saliency metric mea-
suring the usefulness of each point for registration purposes.
The idea is that the more distinctive points (i.e, the ones either
in regions of articulated geometry or high color variance) are
the most salient ones.

a) b) c)

Fig. 2. |Api | in different situations: a) On edge samples |Api | ' |Wpi |/2;
b) On corner samples |Api | ' |Wpi |/4; c) On isolated samples |Api | is
very small.

The curvature of the local surface was used as distinctivity
measure of geometry (as suggested by [15]). The idea is
that points corresponding to high curvature regions can be
considered more distinctive since they force tighter bounds on
the surface alignment. In particular we compute the normal
npi to the surface at each point pi and then we associate to
each sample pi the set

Api
= {(p′ ∈Wpi

) ∧ (np′ · npi
> Tg)} (1)

of the points for which the surface normals np′ form an angle
smaller than arccos(Tg) with the normal npi

of point pi. The
cardinality of Api

is therefore inversely proportional to the
local curvature of the surface surrounding the selected point.
Note that the point p itself is included in the computation in
order to ensure that |Api

| ≥ 1. Note how a large value of |Api
|

corresponds to samples in flat regions, not very informative for
registration purposes. Samples with small |Api

| are typically
associated to edges, corners and high curvature regions. These
points represent tighter bounds for the surface alignment. They
also have the risk of being less reliable due to the edge
artifacts on Kinect data, but notice how edge points have been
processed by the bilateral filter of Section II-A. For this reason
samples with |Api

| > |Wpi
|/2+

√
Wpi

are excluded from the
salient point set and their distinctivity is set to 0. Note how, as
shown in Fig. 2 |Api

| = Wpi
/2 is the typical value for edge



points, the rationale for the threshold value is to keep edge
samples or samples with a comparable saliency. On the other
side a low value of |Api | is usually associated to isolated points
typically unreliable or to artifacts due to noise. We decided to
exclude points for which |Api

| < |Wpi
|/4 (note how a quarter

of the window size is the region covered by the considered
surface in the case of a typical corner, as shown in Fig.2).
The geometric distinctivity measure is therefore computed as
the inverse of the cardinality of Api , i.e.:

Dg(pi) =


0 if |Api

| ≤ |Wpi
|/4

1/|Api
| if |Wpi

|/4 ≤ |Api
| ≤ |Wpi

|/2+
√
|Wpi

|
0 if |Api | ≥ |Wpi |/2 +

√
|Wpi |

(2)
Fig. 3 shows an example of the computation of geometric

distinctivity on a sample 3D view for different values of the
threshold Tg .

a) b) c)

Fig. 3. Geometric saliency corresponding to different values of Tg . Darker
points correspond to larger values of Dg(pi).

With respect to color information let’s recall that a uniform
color space, such as CIELab, ensures the consistency of the
distance measurements between the different color compo-
nents. Furthermore, since the L component of the CIELab
color vector (i.e., the luminance), is strongly affected by the
viewing direction, specially on reflective surfaces, we decided
not to consider it and to use only the a and b components.
Similarly to the approach used for geometric information we
analyze the window Wpi

around point pi and we look the
points with color properties similar as those of pi, i.e. we
compute the set:

Cpi
= {(p′ ∈Wpi

) ∧ (
√
(api
− ap′)2 + (bpi

− bp′)2 < Tc)}
(3)

i.e., the set of the points of Wpi with color components
(ap′ , bp′) similar to those of pi (also in this case pi is included
in the computation). If it belongs to a uniform color region
the cardinality of Cpi

will be large. If pi belongs to regions
with a complex texture pattern (more suitable for registration
purposes since color data can be used to properly align the
surfaces) |Cpi | will assume lower values. As for the case of
geometry we threshold the values in order to avoid points in
uniform regions or in too noisy areas. The color relevance of
the point (an example is shown in Fig. 4) is computed as

Dc(pi) =


0 if |Cpi

| ≤ |Wpi
|/4

1/|Cpi | if |Wpi |/4 ≤ |Cpi | ≤ |Wpi |/2+
√
|Wpi |

0 if |Cpi
| ≥ |Wpi

|/2 +
√
|Wpi

|
(4)

a) b) c)

Fig. 4. Color saliency corresponding to different values of Tc. Darker points
correspond to larger values of Dc(pi).

Finally the distinctivity of a point is computed as the
maximum of the color and geometric distinctivity:

Dp(pi) = max(Dg(pi), Dc(pi)) (5)

a) b)

Fig. 5. Maximum of the color and geometric distinctivity Dp(pi) for two
sample scenes. Darker points correspond to larger values of Dp(pi).

Fig. 5 shows a couple of examples of the computed saliency
values on two sample scenes. In order to build the set Pi of the
relevant points of view Vi that will be used for the registration
we add a further constraint in order to favor their uniform
spatial distribution. Namely the acquired view is divided into
quadrants of 40x40 pixels by a regular grid on the Kinect depth
map, i.e. the 640x480 depth map of the Kinect is sub-divided
into 16x12 = 192 quadrants. For each quadrant we search for
the Nq highest saliency points which will become the salient
points for the corresponding regions. If a quadrant contains
Ni < Nq salient points (e.g., because it corresponds to a flat
and untextured region), the Ni salient points are selected and
the missing Nq−Ni points are taken from the other quadrants
by increasing their number of salient points (i.e., for the Kinect
each quadrant gets (Nq −Ni)/(192− 1) extra salient points).
For the experimental results we used a total of Nd = 2880
salient points, i.e. Nq = 2880/192 = 15 points for each
quadrant (less than 1% of the acquired samples).

C. 3D geometry registration with color-aware ICP

The Kinect sensor is used as an hand-held scanner and is
moved around the scene in order to acquire I frames each
corresponding to a 3D view Vi, i = 1, .., N of the scene.
The approach presented in the previous section can be used to
extract the set Pi of the relevant points of view Vi to be used
as input for the registration algorithm. The proposed algorithm
is based on the Iterative Closest Points (ICP) method [4].
Since the views are very close together the ICP can be applied
directly to the acquired data.

The proposed approach is outlined in Algorithm 1. Firstly
the relevant points Pi of view Vi are extracted by the method



of Section II-B. Then a 5-dimensional KD-tree is built where
each point has 5 dimensions, the 3 spatial coordinates (x, y, z)
and the two color components a and b of the corresponding
color value in the CIELAB color space. In order to allow the
nearest neighbour search on the 5 dimensional representation
that includes two completely different measurement spaces
both the geometry and the color are normalized by their
standard deviations σg and σc. The color is then further
multiplied by a weighting factor (we experimentally set it to
kcg = 1/7), i.e.:

x′ =
x

σg
y′ =

y

σg
z′ =

z

σg
a′ = kcg

a

σc
b′ = kcg

b

σc
(6)

A modified version of the ICP algorithm is then used to
register the relevant points Pi over the previously aligned view
V r
i−1 of the scene. Various extensions and variations of the

ICP algorithm have been proposed [16], in this work we used
as the distance between corresponding point the distance in
the (x′, y′, z′, a′, b′) space, i.e. the distance depends on both
the geometrical distance in the (x, y, z) space and on the
difference between the color of the two samples. After the ICP
algorithm reach the convergence the set of relevant points Pi

is analyzed and a new set P ′i is built by removing from Pi the
outliers, i.e. only correspondences with a distance smaller than
a threshold Ticp in the (x′, y′, z′, a′, b′) space are preserved.

The remaining set of points P ′i is used inside a second ICP
procedure that performs a final refinement by using geometry
information alone. This allows to obtain an accurate geometry
alignment and at the same time to avoid common ICP errors on
regions or views with limited geometry details where geometry
information alone is not sufficient to constrain the registration.

Algorithm 1 Color-aware ICP procedure
1: Extract salient points
2: Construct the 5 dimensional KD-tree
3: Run ICP with color and geometry based distances
4: Remove outliers
5: Run refinement ICP with pruned set of salient points and

geometry information only.

In order to understand how the proposed ICP algorithm
with combined color and geometry distance can improve the
registration performances lets have a look more in detail to
the registration process. If the two point clouds have a large
amount of geometry details standard ICP can be applied with
the euclidean distance in 3D space as shown in Fig. 6a.
Unfortunately in the acquisition of large scenes (e.g. the room
or the car in the experimental results) it is quite common
to acquire large regions with just a large planar surface and
furthermore the low accuracy and high noise level of the
Kinect makes difficult to constraint the registration on small
objects or surface details as is done with 3D views from
laser scanners. In this case, as shown in Fig. 6b, geometry
information alone is not able to constraint the registration. In

particular the planar surfaces can “slide” one over the other and
the alignment is constrained only in the direction perpendicular
to the plane while the alignment in the direction parallel to the
plane surface is very unreliable. Fig. 7a shows an example of
this problem on a real scene, note how the objects attached to
the planar wall surfaces clearly shows the error accumulated in
the registration process. In order to avoid the “sliding” effect it
is necessary to consider also the color in the computation of the
point distances in the registration algorithm. In the proposed
algorithm the search for the correspondences in the euclidean
3D space has been modified by adding two further dimensions
representing the color of the considered sample (luminance has
not been used since it is not very stable across the different
views, specially with reflective objects). In this way each point
is related to the point on the target view that is close spatially
but also have a similar color. Since on planar regions the
salient points are typically selected on corner and edges of
the texture information this approach allow to precisely align
the edges of the objects in the color view and so to constraint
the alignment even in the cases where geometry information
is very limited or unreliable due to the low accuracy of the
depth camera, as shown in Fig. 6c. Fig. 7b shows how by using
also color data the scene of 7a can be correctly reconstructed
avoiding the “sliding” effect. It is also interesting to notice that
the use of salient points only for the new view that is added
at each step allows to both drastically reduce the computation
time and to improve the registration accuracy.

a) b) c)

Fig. 6. Alignment of two point clouds: a) alignment of two scenes containing
enough geometry information to constraint the registration; b) alignment of
two planar surfaces with geometry information alone; c) alignment of two
planar surfaces with both color and geometry constraints.

Finally the procedure is then iterated until all the acquired
views are processed. During the registration process the algo-
rithm also checks for the presence of loops among the chain
of registered views. If a loop is detected the Explicit Loop
Closing Heuristic (ELCH) method [17] is used to refine the
alignment and avoid the propagation of errors through the
registrations of a large amount of views.

D. Fusion of the geometry and color

After registering the new view over the previous acquired
data it is necessary to fuse together the two point clouds in
order to reduce the number of samples and to produce the
final surface. For this task we firstly create a merged point
cloud containing all the samples from both Vi and Si−1.
Then each point of the set Vi ∪ Si−1 is analyzed and if
another point with a distance smaller than a threshold tres
(the threshold depends on the desired final model resolution)
is found then a single 3D point is kept. This simple fusion



a)

b)

Fig. 7. Example of the reconstruction of a planar scene: a) Reconstruction
with geometry-based distance; b) Reconstruction using color and geometry-
based distance.

algorithm allows reasonable performances within very limited
computation time. Clearly more complex fusion schemes can
be used for offline accurate reconstructions. Finally, since
the aim of the proposed reconstruction technique is to build
colored 3D models, it is also necessary to add color data to the
acquired geometry. Each acquired sample has the associated
color information, but in the fusion step it is necessary to
assign a color value to the samples obtained by merging the
points coming from different views. For this task for each 3D
sample pi that is going to be merged we get the normal npi

and the viewing direction vj corresponding to the view Vj in
which point pi has been acquired. We assign to the merged
sample the color data corresponding to the sample for which
the normal is better aligned with the viewing direction, i.e.,
the one that maximizes |npi

· vj |.

III. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed
approach we acquired several different scenes. We acquired
several hundred frames for each considered scene at 10fps.
Each acquired frame is made by a 640x480 depth map and
a 1280x1024 color image (bilinear interpolation has been
used to assign the color values to the lower resolution depth
information). Note that this means that each scene has been
acquired in just a couple of minutes, i.e., much faster than any
standard 3D scanning techniques.

Fig. 8 shows the reconstruction of a simple office scene
acquired by moving the Kinect on a half circle around it.
This scene has relevant geometrical features that can bound
the registration while texture information is quite limited. The
alignment process is robust both for the proposed approach and
for other geometry-based approaches. This example together
with the one of Fig. 7b shows how the proposed approach is
able to exploit the correct clue when only one of the two types
of information (color or geometry) has relevant clues.

Fig. 8. Reconstruction of a simple office scene (from 100 frames).

a) b) c) d)
Fig. 9. Reconstruction of a seated person (from 800 frames).

Fig. 9 shows an example relative to the reconstruction of
a person. The seated person has been acquired moving the
Kinect around him. In this case the corner-less shape can lead
to errors in alignment schemes based on geometry only. The
proposed approach is able to correctly reconstruct the person
shape exploiting both geometry and texture information. A
critical point in the texture usage is the management of
lightness changing during the acquisition. The scene around
the acquisition is not light-controlled so there are reflections
and shadows. The choice of ignoring lightness permits to the
proposed approach to avoid registration errors and to precisely
align the views. In order to avoid blind areas in the final 3D
model, a large number of frames is required (800 in this case).
In order to avoid error accumulation our approach exploits
the on-line loop detection together wit the ELCH algorithm
and is able to solve this problem keeping in RAM only the
last two frames and the computed position of the previously
aligned frames, thus keeping the memory usage very low.
Computation time requirements are also quite limited, the
current un-optimized implementation is able to process around
1 frame per second on a 2,4 Ghz Intel Q6600 processor
exploiting a single core. This permits the reconstruction of
very long sequences of frames and of large scenes.

Fig. 10 shows our approach applied to a whole colored car
(1300 3D views). This scene has several critical issues: the
acquisition was done outdoor where sun-light interferes with
the IR pattern projected by the Kinect [2]. Furthermore the
car’s surface is very reflective and reflects the scene all around
the car itself. Finally the shape has large regions with very little
features. The picture on the left is a view of the back of the car
3D model, while the right picture shows a lateral view of the
3D model with the roof purposely removed in order to show
the interior. The latter allows to recognize several element



a) b)

Fig. 10. Reconstruction of a Chrevolet Aveo (from 1300frames). a) View
from the back; b) side view with the roof purposely removed in order to show
the interior.

inside the car like the steering wheel and the seats. To constrain
alignments in this scene, the feature extraction approach is
fundamental since many frames have poor geometric and color
information and only the combined use of the two information
sources permits a correct alignment. Note how the geometry
is very accurate while texture information is affected by the
reflections that are not handled completely by the adopted
simple color fusion model (texture creation is in a preliminary
stage and is out of the scopes of this paper, further research
will be devoted to improve this step).

a)

b)
Fig. 11. Reconstruction of the LTTM research lab (from 800 frames).

Fig. 11 shows the reconstruction of a room (800 frames).
This scene is particularly challenging since there are large
flat surfaces (walls) without relevant geometry information
but with texture due to the posted pictures and posters. The
proposed approach permits to exploit texture when geometry
information is completely lacking and to obtain a complete
and accurate 3D model of the scene.

IV. CONCLUSIONS

This paper proposes a novel 3D reconstruction pipeline
explicitly targeted to the characteristics of the data acquired
by the Kinect exploiting also the side information coming
from the associated color camera. The proposed approach
demonstrated to be very robust also on challenging scenes
thanks to the use of color information in order to assist the 3D
reconstruction. Color information has been used both to extract
the salient points and to compute of the distances between
corresponding points in the ICP algorithm. Furthermore the
reliable extraction of salient points has allowed to use a
smaller number of points in the registration process and so
to speed-up the 3D reconstruction algorithm. Experimental
results show how the proposed approach allows to use the
Kinect as an handheld scanner for accurate 3D reconstructions.
Further research will be devoted to improve the current final
fusion step of Section II-D, still in a preliminary development
stage for what concerns both geometry and color data. The
introduction of a global alignment step able to improve the
reconstruction accuracy will also be addressed. The usage of
other consumer depth cameras and Time-Of-Flight sensors will
also be considered.
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