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Abstract 

Automatic hand gesture recognition is a challenging problem that is attaining a growing interest due 

to its applications in natural interfaces for human-machine interaction, automatic sign-language 

recognition, computer gaming, robotics and healthcare. This chapter briefly reviews existing 

approaches for automatic hand gesture recognition and proposes a novel system exploiting together 

color and depth data. The proposed approach is based on a set of four descriptors extracted from the 

depth map and three texture descriptors extracted from the 2D image, while the classification is 

performed by an ensemble of support vector machines and decision trees. A main novelty for feature 

extraction is a method based on the histogram of gradients used for describing the curvature image 

obtained from the depth map.  

Another novelty is the evaluation of different colorimetric spaces for improving the recognition 

performance of the texture descriptors: the best performance is obtained using the lightness band of 

the L*c*h* color space.  

In the experimental Section the performances of different “stand-alone” descriptors are firstly 

compared and their correlation is analyzed for assessing their complementarity, and eventually the 

advantage gained by their fusion is demonstrated by the Wilcoxon Signed-Rank test. 

Keywords: hand gesture; texture descriptor; ensemble of classifiers; depth data; Kinect. 
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1. Introduction 

Automatic hand gesture recognition [19] is a challenging problem that is attaining a growing interest 

due to its many applications in different fields like natural interfaces for human-machine interaction, 

automatic sign-language recognition, computer gaming, robotics and healthcare applications. While 

many different approaches have been developed for hand gesture recognition from 2D color images, 

the use of range cameras or depth cameras for this task is a novel research field.  In this chapter a 

gesture recognition system is presented, exploiting together color data and the 3D geometry 

information provided by a depth camera framing the user hand. 

Until recently, most vision-based hand gesture recognition approaches were based on the analysis of 

images or videos framing the hand. Complete reviews of the field may be found in literature ([19], 

[20]). The bidimensional representation is not, however, always sufficient to capture the complex 

poses and inter-occlusions characterizing hand gestures. 

Three dimensional representations are instead a more informative description that represent the actual 

shape of the hand in the framed pose. Furthermore, nowadays 3D data is easily obtainable thanks to 

the recent introduction of low cost consumer depth cameras. Devices such as Time-Of-Flight cameras 

and Microsoft's Kinect™ [21] have made depth data acquisition available to the mass market, thus 

opening the way to novel gesture recognition approaches based on depth information. 

 

Several different approaches have been proposed in order to exploit depth for hand gesture 

recognition.  The general pipeline is the same for most of them, i.e. first a set of features is extracted 

from depth data and then various machine learning techniques are applied to the extracted features in 

order to recognize the performed gestures.  
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Kurakin et al [22] use silhouette and cell occupancy features for building a shape descriptor that is 

then  fed into a classifier based on action graphs. Volumetric features are extracted from the hand 

depth and then classified by Support Vector Machines (SVM) in both the approaches of [26] and [27].  

In the work of Doliotis et al. [19] the trajectory of the hand is extracted from depth data and used 

inside a Dynamic Time Warping (DTW) algorithm.  

Randomized Decision Forests (RDFs) have also been used for the classification step in hand gesture 

recognition in [30] and [31].  The latter also combines together color and depth information to 

improve the classification results. Another key observation is that depth data allows to perform an 

accurate segmentation of the hand shape. For instance, [32] and [17] extract features based on the 

convex hull and on the fingertips positions from the silhouettes obtained in this way. A similar 

approach is exploited in XKin [18], an open-source hand gesture recognition software. Histograms 

of the distance of hand edge points from the hand center have been used in [24] and [25] by Ren et 

al. 

Many gestures may not be recognized by only considering a static pose, and the recognition of 

dynamic gestures is attracting a large interest.  Biswas and Basu [33] exploit the trajectory of the hand 

centroid in the 3D space for dynamic gesture recognition. A joint depth and color hand detector is 

used to extract the trajectory that is then fed to a Dynamic Time Warping (DTW) algorithm in [19]. 

Finally, Wan et al. [34] use the convex hull on a single frame together with the trajectory of the 

gesture.  

  

 In [15] two feature descriptors, one representing the distance of the fingertips from the hand centroid 

and the other the curvature of the hand contour computed on depth data, are used inside an SVM 

classifier. A more performing ensemble is proposed in [14], where two additional features were added 

to the approach of [15], namely, one describing the elevation of the fingers from the palm plane and 

the other describing the shape of the palm area. 
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Starting from [14][15][36] this work follows this rationale as well and exploits a hand gesture 

recognition scheme combining seven types of hand shape features extracted from both the depth map 

and the color image framing the hand. Moreover, it proposes the choice of ad hoc colorimetric space 

for the feature extraction from the color image and the design of a performing ensemble that takes 

into account the correlation among features and is based on the fusion of different classifiers. 

The proposed ensemble is made of seven descriptors: four are extracted from the depth map (distance, 

elevation, curvature, palm area) and three are extracted from the 2D image (local phase quantization, 

local ternary patterns, histogram of gradients). After accurate testing it has been found that feature 

extraction from different colorimetric spaces is useful for improving the performance of the texture 

descriptors, therefore in this work the lightness band of the L*c*h* color space is used for the 

extraction of texture descriptors from the 2D image. 

Furthermore, a novel method for representing the curvature image before using it for training a given 

classier is proposed based on the histogram of gradients. 

The classification task is carried out by means of a heterogeneous ensemble of classifiers: a random 

subspace of SVM classifiers and a boosting approach based on decision trees (ROT) [12]. 

The reported results clearly show the usefulness to combine different descriptors; the proposed 

ensemble outperforms previous works in the same datasets. 

The chapter is organized as follows:  Section 2 introduces the proposed gesture recognition system. 

Section 3 contains the experimental results and finally Section 4 draws the conclusions. 

 

2. Method overview 

The proposed recognition pipeline, depicted in Fig. 1, starts from a 2D color image and the 

depth map of the framed scene, and is based on the following main steps: 
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• reprojection: the depth data is projected over the 2D color image using previously computed 

calibration information in order to have properly aligned color and depth data in the same 

reference system. 

• hand segmentation: the region corresponding to the hand is segmented from the background 

using both color and depth information; 

• color space transformation: the RGB input image is converted in the L band of L*c*h* color 

space. This band has been selected among many others as the one which obtained best 

classification performance for the selected texture descriptors; 

• geometric feature extraction: distance, elevation, curvature and palm features are extracted from 

the hand region of the depthmap; 

• texture feature extraction: texture feature are extracted from the hand region of the 2D image and 

from a matrix representation of the curvature; 

• classification and fusion: each descriptor is classified by an ensemble of SVM and an ensemble 

of boosted decision trees,  then these sets of classifiers are combined by weighted sum rule [2]. 
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Figure 1. Overview of the proposed approach. 

 

2.1 Reprojection  

The depth data acquired by the Kinect is firstly projected on color image for the correct 

alignment of color and depth data. In order to perform this task it is necessary to compute the positions 

of the depth samples in the 3D space and then to project them back to the 2D color image reference 

system. This requires the calibration data for the depth and color cameras of the Kinect that have been 

previously computed by using the calibration method proposed in [35]. By the end of such alignment 

a color and a depth value are associated to each sample. 
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The first step is the extraction of the depth samples corresponding to the hand region from the 

depth map. For this purpose, the approach introduced in [14] and [15] is used and here briefly 

resumed.  

The proposed method starts by extracting from the acquired depth map the closest point to the 

camera, that will be denoted with Xmin (see Figure 2b).The algorithm automatically avoids to select 

as Xmin an isolated artifact by verifying that the selected point has close samples with a similar depth 

according to the approach described in [15]. After the selection of Xmin, the set H of all the points Xi 

with a depth value D(Xi) included in the range [Xmin , Xmin + Th ] and with Euclidean distance from 

Xmin in 3D space smaller than a threshold Th2 is computed:  

�   = {�� | �	��
 <  �	���

  +  ��  ∧ ‖��  − ���
‖ <  ���}  
Th and Th2  are suitable thresholds whose values depend on the user’s hand size (in the 

experimental results  Th= 10cm and Th2 = 30cm).   

In the next step the color of the samples is checked in order to verify if it is compatible with the 

skin color. Finally, the detected hand size must be compatible with the hand’s one [16].  This approach 

allows to reliably segment the hand from the other scene objects and body parts (as shown in Figure 

2b). However a drawback of this scheme is that some parts of the wrist and of the forearm may be 

included in the extracted region. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

Figure 2. Extraction of the hand: a) RGB image; b) acquired depth image; c) computed hand mask 

(the red point correspond to Xmin); d) blurred depth mask with C dotted in red; e) segmented hand 

regions. (best viewed in colors, some images have been cropped to highlight the areas of interest) 

 

 

A 2D mask corresponding to the hand samples in the depth image space is then built and the 

related binary image is filtered by a low pass Gaussian filter with a large standard deviation. The 

value of the standard deviation is adaptive and varies with the distance of the hand from the Kinect, 

as described in [15]. 
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The maximum of the filtered image, which is the starting point of the next step, is now detected. 

Since the filter support is larger than the hand and the palm is larger than the forearm and denser than 

the finger region, the computed maximum typically lies somewhere close to the center of the palm 

region (see Figure 2c). In case of multiple points with the same maximum value, the closest to Xmin 

is selected. 

 

The following step of the proposed method is the detection of the largest circle, centered on the 

maximum point cited above (denoted with C), that can be fitted on the palm region, as described in 

[15]. A more refined version of this procedure [16] uses an ellipse in place of the circle in order to 

better approximate the shape of the palm, especially when the hand is not perpendicular with the 

optical axis of the depth camera.  

The samples inside the circle (or inside the ellipse) belong to the palm. A plane in 3D space is fitted 

on them by using a robust estimator exploiting Singular Value Decomposition and RANSAC. The 

axis that roughly corresponds to the direction of the vector going from the wrist to the fingertips is 

then estimated by applying Principal Component Analysis (PCA) to the hand samples. This is a rough 

estimation that gives only a general idea of the hand estimation but it is a good starting point for the 

feature extraction algorithm. 

On the basis of the computed data, the set H is subdivided into three sets as shown in Figure 2d: 

• The palm points P 

• The wrist points W (this set contains both wrist and part of the forearm and will be 

discarded).  

• The finger points F 

 

Edge detection is finally applied to the points of H-W in order to build the hand contour points set E.  

 

2.3 Color space transformation 
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Several colorimetric spaces have been evaluated for improving the performance of the texture 

descriptors. In particular the best performance is obtained using the lightness band of the L*c*h* 

color space. The CIE L*c*h* color space (Figure 3) is a device independent color model which is 

essentially in the form of a sphere with three axes.  

The three components represent:   

• Lightness (a vertical axis from 0 to 100, i.e., absolute black to absolute white) 

• Chroma (a horizontal axes from 0 at the center of the circle to 100, i.e., from neutral 

grey, black or white, to “color purity”)  

• Hue (a circular expressed in degrees from 0° to 360°, representing different colors 

0°=red, 90°=yellow, 180°=green, 270°= blue).  

 

Figure 3. L*c*h* color space (best viewed in colors) 

 

2.4 Geometric Feature Extraction 

2.4.1 Distance features 

Distance features, introduced in [15] on the basis of a previous idea from [24], represent the 

distance of the finger samples in F from the hand centroid C.  
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For each sample X� in F the Euclidean distance d	X�
  in 3D space from the centroid is 

computed. The various samples are sorted on the basis of the angle θ	X�
  between the projection on 

the palm plane of the PCA principal axis and of the vector connecting each point X�  to the centroid. 

A histogram representing the maximum of the distance from the centroid for each angular direction 

is then built: 

 L	θ
 =  max�� �!�	"#
!�$ � d	X�
 

 

Where ∆ is the quantization step for the histogram computation (Δ=2° has been used). For each 

gesture g in the database, a reference histogram L%&  is built. A set of angular regions corresponding to 

the direction of the various fingers that are used in each gesture is then defined on this histogram (see 

Fig.4b). These regions correspond to the position of each finger in each gesture and will be used for 

computing the distance features. 

In order to precisely extract the regions corresponding to the various fingers, it is necessary to 

align the computed histograms L	θ
 with the template on which the regions are defined. For this 

purpose, the maximum of the correlation between the acquired histogram and the translated version 

of the reference histogram of each gesture is computed. The computation is also performed with the 

flipped version of the histogram in order to account for the fact that the hand could have either the 

palm or the dorsum facing the camera, and that both the left and the right hand could have been used. 

The maximum between the two cases is selected and the corresponding translation gives  the 

translational shift required to align the acquired histogram with the reference one (together with the 

flipping if it was selected). Note how there can be a different alignment for each gesture. This 

approach basically compensates for the limited precision of the direction computed by the PCA, and 

allows to precisely align the reference and the computed histograms. In this way, the regions 

corresponding to the various features of the gesture are precisely defined. Fig. 5 shows some examples 
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of the computed histograms for three different gestures. The plots clearly show the different fingers 

arrangements in the various gestures.  

 

 
 

a) b) 

Figure 4. Histogram of the 3D distances of the edge samples from C. The colored areas are the 

features regions: a) finger edges computed from F ;  b) corresponding histogram L(θ) with the 

regions corresponding to the different features.  
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Figure 5. Examples of distance histogram for some sample frames from different gestures. 
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The distance features set Fl contains a feature value for each finger j in each gesture g ∈ 

1,..,G. The number of raised fingers is different in each gesture, and so also the number of feature 

values is different. The feature value (),+,  associated to finger j in gesture g is the maximum of the 

aligned histogram in the angular region corresponding to the finger j in gesture g (see Fig. 4b), i.e, : 

(),+, =  max-.,/012!-!-.,/034 56)	7
 − 89
5�6:   

Where 7),+��
 and 7),+�6: are the extremes of the region corresponding to finger j in gesture g, 

56)	7
 is the aligned version of the computed histogram, rf  is the radius of the circle (or the distance 

from <= to the ellipse border). The length Lmax  of the middle finger is used to normalize with 

respect to the hand size in order to make the approach independent from the size of the hands of 

different people. The radius rf need to be subtracted from all the features for avoiding the jump from 

0 to rf  of the values when the edge crosses the circle border.  

In this way up to G*5 features are built for each acquired sample (the actual number is smaller 

since not all the fingers are of interest in all the gestures). For instance,  the dataset used in the 

experimental results taken from the work of Ren et al. [25] contains 10 different gestures  and 24 

features have been used, about a half of the 50 features that there would be if all the fingers were used 

in all the gestures. 

 

 

2.2.2 Curvature features 

The second descriptor represents the curvature of the edges of the hand shape in the depth map. The 

proposed algorithm is based on integral invariants [23] and exploits the hand edge points E and the 

mask Mh representing the hand samples in the depth map (Figure 2b).  
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For each point Xi in E a set of S circular masks >?	��
, @ = 1, . . C centered on Xi with radius   varying 

from 0.5 cm to 5 cm is built. The ratio D	��, @
 between the number of samples inside each circular 

mask that belong also to the hand mask and the total number of samples in the mask for is then 

computed, i.e.: 

D	��, @
 = |>?	��
  ∩ >�||>?	��
|  

 Note how the radius value s actually corresponds to the scale level at which the feature extraction is 

performed. Differently from [23] and other approaches, the radius is defined in metrical units, thus 

making the descriptor invariant with respect to the distance of the hand from the camera.  

The values of D	��, @
  characterize the curvature of the region around sample ��. The minimum value 

D	��, @
 = 0 corresponds to an extremely convex shape, D	��, @
  = 0.5  to a straight edge and the 

maximum D	��, @
  = 1 to an extremely concave shape. The [0, 1] interval is quantized into B bins of 

equal size. Let Vb,s be the set of the finger edge points �� ∈ F with the corresponding value of D	��, @
 

falling in each bin:  

DG,? = H �� I J − 1K < D	��, @
 ≤ JKM  
where b is the bin index. Curvature features are given by the cardinalities of the sets |DG,?| for each 

bin b and radius value s normalized with respect to the hand contour length, i.e.: 

(G,?N = |DG,?||F|  

In this way a feature vector Fc containing B*S features is built. As expected, the value of the different 

curvature features depends on the positions of the fingers not folded on the palm region and on their 

arrangement, thus giving an accurate description of the hand gesture. An example of curvatures 

vectors, arranged in a 2D matrix and visualized with color maps, is reported in Fig. 6. 
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Figure 6. Examples of curvature descriptors for some sample frames from different gestures. 

 

2.2.3 Elevation features 
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The construction of the elevation features is based on the same scheme employed for the distance 

features in Section 2.2.1.: first an histogram representing the distance of each sample in ℱ from the 

palm plane π is built, namely, for each sample Xj in ℱ its distance from plane π is computed: 

A = e"R  =   sgn		UV  −  UVW
  ⋅  YZW
 | UV −  UVW |, �+ ∈  ℱ 

where [\] is the projection of  ̂+ on π. The sign of e"R accounts for the fact that Xj can belong to any 

of the two hemi-spaces defined by π, i.e., Xj can either be on the front or behind π.  

Then, following the scheme used for distance features, for each angular sector (represented by a 

quantized value Θq) the point with the greatest absolute distance from the plane is selected, thus 

producing an histogram E(Θ):  

F`Θbc =  d maxe	fg
 hUV imaxe	fj
 hUVi >  imine	fj
 hUVimine	fj
 hUV mnℎh8pq@h  

The quantization uses the same intervals used for distance feature in Section 2.2.1. The histogram 

E(Θ) corresponding to the performed gesture is then aligned to the various reference gestures in G 

using the alignment information already computed in Section 2.2.1, and it is subdivided in different 

regions corresponding to the various fingers as done for the distance features. Let Eg(Θ) be histogram 

E(Θ) aligned with the gth gesture template. The elevation features are then computed according to: 

f),+s =  
tu
v 15�6: maxe	f.,/
 F)	Θ
 i maxe	f.,/
 F)	Θ
i >  i wqxe	f.,/
 F)	Θ
i15�6: mine	f.,/
 F)	Θ
 mnℎh8pq@h  

Where the intervals y	Θ),+
 are again the same used for distance features. Note that the alignments 

computed in Section 2.2.1 are used here both to save computation time and because the correlations 

from distance data are more reliable than the ones computed on elevation information. Finally note 

that the vector z{ of the elevation features has the same structure and number of elements of the 

vector z| of the distance features. 
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2.2.4 Palm area features 

The last set of features describes the shape of the palm region P. Note that P corresponds to the palm 

area, but it may also include finger samples when the fingers are folded over the palm. The palm 

region is partitioned into six different areas, defined over the plane π(see Fig. 6). The circle or ellipse 

defining the palm area is firstly divided into two parts: the lower half is used as a reference for the 

palm position since it is not occluded by the fingers in most gestures, and a 3D plane πp is fitted on 

this region.  

The upper half is divided into 5 regions Aj, j = 1, .., 5 roughly corresponding to the regions close to 

the different fingers as shown in Fig. 7, i.e., each region corresponds to the area of the palm that is 

affected by the position of the associated  finger and where the finger can potentially fold.  

The various area features account for the deformation the palm shape undergoes in the corresponding 

area when the related finger is folded or is moved. In particular, notice how the samples corresponding 

to the fingers folded over the palm are associated to P and are not captured by distance or elevation 

features, but they are used for the computation of palm area features. 

The areas positions on the plane depend on the following parameters: 

• The palm area, represented by the center Cf and the radius rf of the circle (or by the two axes 

of the ellipse if this representation is used) 

• The widths of the various fingers. A standard subdivision of the upper half of the circle has 

been used for the experimental results, but it can also be optimized on the basis of the specific 

user's hand. 

• The direction i:}  corresponding to Θ = 0.  

Since the center Cf and radius rf or axes have already been computed in Section 2.1, the only missing 

element is the alignment of the Θ directions. Again, the correlation of the distance histograms 

computed in Section 2.2.1 is used to align the regions template with the hand direction ~�W.  The 

templates are also scaled by rf (or scaled and stretched according to the two axes of the ellipse). 
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The templates are then aligned with the acquired data using the alignment information computed in 

the previous steps. In this way an area feature set is extracted for each candidate gesture. The areas 

aligned with the template of each gesture will be denoted with �+), where g indicates the 

corresponding gesture. The set of points Xi ∈ P associated to each of the regions �+) is then computed. 

Finally, the distance between each sample Xi ∈  �+) and πp is calculated for each region �+).  

The feature corresponding to the area �+) is the average of the distances of the samples belonging to 

the area from plane  πp:  

(),+6 = ∑ ‖�� − ��}‖�1∈�/.I�+)I  
The area features are collected in a vector Fa, made by G x 5 area features, one for each finger in each 

possible gesture, following the same rationale used for Fl and Fe. The entries of Fa are finally 

normalized in order to assume values within range [0, 1] as the other feature vectors.  

 

 

Figure 7. Regions used for the computation of the palm area features. 
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2.5 Texture feature extraction 

In this work three texture descriptors are extracted both from the 2D image and from a matrix 

representation of the curvature. Three well-known descriptors are used: Local Phase Quantization 

(LPQ) [3], Local Ternary Patterns (LTP) [28] and Histogram of Gradients (HoG) [29].  

 

2.5.1 Extracting texture feature from curvature 

Since curvature is very significant for hand representation, in this work two different types of 

descriptors are extracted from curvature information: the standard geometrical measures of curvature 

(explained in section 2.2.2) and other numerical descriptors designed to take into account local 

variation. Following the approach proposed in [5], a matrix representation is used for curvature data, 

obtained by simply rearranging the linear feature vector as a matrix: in this way, relevant information 

can be extracted from the Curvature using well-known textural descriptors, which have the ability to 

well represent shape variations due to gestures. In order to make results independent from the 

evaluation order, 50 different random reshapings are used (see figure 8) to rearrange the curvature 

vector as a matrix and then texture descriptors are extracted from each resulting matrix. Since local 

texture features measure local variations, they are suited to measure the discriminative information 

present in the local neighborhoods of each pixel (i.e., the curvature value in this case). The use of 

different reshaping arrangements makes possible to observe and encode different aspects of curvature 

variations from a single curvature vector. Each descriptor extracted from a reshaped matrix is used to 

train a SVM classifier to be combined in an ensemble using the sum rule. Due to computational issue, 

for this descriptor, the ensemble of decision trees is not used. 
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Figure 8. Reshaping a vector into a matrix. 

 

 

2.5.2 Local phase quantization 

Local Phase Quantization (LPQ) [3] is a texture descriptor based on quantizing the Fourier transform 

phase in local neighborhoods of a point. Histograms of LPQ labels computed within local regions are 

used as texture descriptor similarly to the well-known Local Binary Patterns [37].The extraction of 

LPQ is performed using a short-term Fourier transform on local neighborhoods at each pixel; this 

transform is efficiently computed for the whole image by a 1-D convolution for the rows and columns 

successively. Then, only four complex low-frequency coefficients are considered and quantized by 

observing the signs of the real and imaginary parts of each component. In this work the final 

descriptor1 is obtained by the concatenation of histograms obtained with two settings of the parameter 

radius R which denotes the neighborhood size (R = 3, R = 5). 

 

                                                           
1 The MATLAB code for LPQ is freely available at http://www.cse.oulu.fi/CMV/Downloads/LPQMatlab 

1 2 ... i ... N   

1 ... ... 

2  i ... 

... ... N
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2.5.3 Histogram of gradients 

The histogram of oriented gradients (HoG) [37] is based on the idea that local shapes can be 

characterized rather well by the distribution of local intensity gradients. HoG descriptor is extracted 

by dividing the image into small cells and calculating a local 9-bin equi-width histogram of gradient 

directions (discretized in 9 bins) over the cells. For better invariance to illumination and shadows 

histograms are contrast-normalized within a larger region (blocks of cells) and their combination is 

the final descriptor.  

 

2.5.4 Local ternary patterns 

Local binary pattern (LBP) [37] is a widely used texture descriptor based the encoding of the pixel 

differences between the neighboring pixels and the center pixel in  a local region of an image. Due to 

its sensitivity to noise, several variants have been proposed [38], including the Local Ternary Pattern 

(LTP) [28] which encode the pixel difference between the center pixel pc and the neighboring pixels 

pn using a ternary code, according to a threshold τ: 1 if pn ≥ pc + τ ; –1 if pn ≤ pc – t; else 0. LTP is 

less sensitive to noise as the small pixel difference is encoded into a separate state. To reduce the 

dimensionality, the ternary code is split into two binary codes: a positive LBP and a negative LBP. 

The final LPT descriptor is the concatenation of the histograms computed from positive and negative 

LBP. In this work a multi-resolution version of LTP is obtained by the concatenation of descriptors 

evaluated at different neighborhood sizes: (P = 8; R = 1) and (P = 16; R = 2). Two implementation of 

LTP are tested: LTPu, where the uniform bins are considered, and LTPri, where rotation invariant 

bins are considered. The interested reader can see [37] for more details on uniform and rotation 

invariant bins.  

 

2.6 Classification 

2.6.1 Random Subspace Ensemble of Support Vector Machines  
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Due to the high dimensionality of the descriptors and the low cardinality of the sample dataset, 

automatic hand gesture recognition is a difficult classification task. In order to deal with this 

“dimensionality curse” problem a random subspace (RS) ensemble [4] is used for classification, since 

PS has proven to be effective in these cases. RS is a valid approach for designing ensembles based 

on the perturbation of features: each classifier is trained on a training set obtained by reducing the 

dimensionality of the data by randomly subsampling the features.  

Given a collection of m training samples �� = 	^��, ^��, … , ^��
 , �� ∈ ℜ�, RS randomly selects K < 

N features from the original feature space and creates a new training set by projecting each sample 

into ℜ� . This procedure is repeated L times where L is the number of final classifiers combined by 

the sum rule to obtain the final decision. In this work the two RS parameters are fixed L = N / 2, M = 

50 and support vector machines (SVM) [11] from LibSVM toolbox2 are used as classifiers. 

As already shown in [36] the RS ensemble of SVM outperforms the standard SVM classifier, 

therefore stand-alone SVM has not been tested in this work. 

 

2.6.2 Random Subspace Ensemble of RotBoost with NPE (RSR)  

In order to exploit the diversity of classifiers another ensemble is tested: a variant [12][13] of 

Rotation Boosting (RotBoost) [7][10] coupled with the Neighborhood Preserving Embedding (NPE) 

[8], which is a dimensionality reduction method. 

RotBoost is designed as the integration of AdaBoost [11] and Rotation Forest [7], two ensemble 

generation techniques that apply a learning algorithm to a set of permutated training sets. AdaBoost 

iteratively constructs successive training sets by reweighting the original one in order to better predict 

the samples misclassified in the previous step. Rotation Forest builds each training set by randomly 

split into S subsets the original feature space and reducing its dimensionality by applying Principal 

Component Analysis (PCA).    

                                                           
2 LibSVM toolbox http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 



24 

 

A variant of RotBoost3 [12][13] is used in this work, obtained by coupling the ensemble with 

RS and by using the neighborhood preserving embedding (NPE) feature transform instead of PCA 

for dimensionality reduction. First dimensionality reduction by NPE is applied and a Rotation Matrix 

is calculated to map original data into a new feature space (as in RotationForest), then base classifiers 

are built by applying a RS to the AdaBoost technique. 

Neighborhood Preserving Embedding (NPE)4 [8] is a technique for dimensionality reduction which 

aims at preserving the local neighborhood structure on data manifold; it has proven to be more 

effective than PCA in discovering the underlying nonlinear structure of the data and less sensitive to 

outliers than other feature transform. NPE starts by building a weight matrix to describe the 

relationships between samples: each sample is described as a weighted combination of its neighbors; 

then an optimal embedding is selected such that the neighborhood structure is preserved in the 

reduced space. It is useful to highlight several aspects of NPE (see [8] for more details):  

• NPE is linear (it is a linear approximation of Locally Linear Embedding) so it is fast and 

suitable for real-time applications; 

• NPE can be performed in either supervised or unsupervised mode. When the labels of the 

training patters are available they can be used for building a better weight matrix. 

NPE procedure is based on three step: 

• constructing an adjacency graph, using a K nearest neighbors method; 

• Computing the weights of the edge between the nodes of the graph; 

• Computing the Projections: a linear projections is computed 

 

                                                           
3 Source code [16] available at http://www.dei.unipd.it/wdyn/?IDsezione=3314&IDgruppo_pass=124. 
4 MATLAB code available from http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html. 
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3. Experimental Results  

In this section the experiments performed on two different datasets are discussed. The first [24], 

named REN, contains 10 different gestures performed by 10 different people (Fig. 9) and acquired 

with Microsoft's Kinect. Each gesture is repeated 10 times for a total of 1000 different samples. 

The second dataset [14], named SELF, has also been acquired with the Kinect, and is a self-collected 

dataset which contains 12 different gestures (a small subset of the American Sign Language gestures) 

performed by 14 different people (Fig. 10). Each gesture is repeated 10 times for a total of 1680 

samples (depth maps and the corresponding color images).  

 

 

Figure 9. Sample color images of the 10 different gestures in REN. 

 

 

Figure 10. Sample color images of the 12 different gestures in SELF. 
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The experiments have been carried out according the “the leave-one-out user” in both the datasets: 

the samples from N-1 users are used for the training set and the samples from the remaining user for 

the test set. Then the obtained results are averaged among all the N experiments obtained by varying 

the user in the test set. 

 

The performance indicators used to compare the different approaches are accuracy (ACC), i.e. the 

proportion of true results (both true positives and true negatives) in the population, and error under 

the ROC curve [2] (EUC), i.e. 1-AUC. AUC is a one dimensional performance indicator obtained as 

the area under the curve (ROC) which plots the fraction of true positive rate vs. the false positives 

rate at various threshold settings.  The AUC may be interpreted as the probability that the system will 

assign a higher score to a randomly chosen positive sample than to a randomly chosen negative 

sample. In a multiclass problem as hand gesture recognition, the one-versus-all EUC is considered 

for each class [6] and the reported EUC value is obtained by averaging all class values. 

 

The first experiment aimed at selecting the most appropriate color space for performing texture 

feature extraction (using a stand-along SVM classifier). In this experiments an exhaustive search 

among 14 different color spaces is performed in order to find out the most appropriate space for this 

case study. In Table 1 the accuracies obtained by the three texture descriptors presented in Section 

2.5 are evaluated as a function of the input color band (only the best five color bands are reported, 

considering the HOG descriptor). As stated in Section 2.3 the best choice is the band L of L*c*h*. 

From the reported results it is clear that the L bands work well for all the descriptors.  
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 Ren Self 
Color Band LTP LPQ HOG LTP LPQ HOG 
Gray Values from RGB 70.3% 77.0% 94.1% 60.7% 66.7% 85.2% 
L of L*c*h* 71.6% 77.4% 95.3% 63.9% 67.3% 87.0% 
L of Luv 71.6% 77.4% 95.3% 63.9% 67.3% 87.0% 
L of Lab 71.6% 77.4% 95.3% 63.9% 67.3% 87.0% 
S of HSV 26.2% 70.4% 92.6% 17.0% 55.4% 86.8% 
Cr of YCbCr 55.2% 57.1% 93.5% 49.6% 57.6% 85.8% 

 

Table 1. Comparison among different color bands in terms of accuracy.  

The second experiment aimed at validating the use of texture descriptors on the curvature extracted 

from the 2D image. In table 2 the performance obtained by texture descriptors coupled with the matrix 

representation of the curvature are reported (LTP is not reported since it is not suited for representing 

directly the curvature image which is not a grey level image).  

The classification task is performed by means of an ensemble SVM classifiers, which combines 

results obtained according to different rearrangements of curvature data (see section 2.5.1).  

 

 

 ACC EUC 
Classification 
Approach 

Feature set REN SELF REN SELF 

Ensemble of SVMs Curvature 92.4 82.7 0.5 2.0 
LPQ  91.0 80.9 0.8 1.8 
HOG 94.7 84.6 0.4 1.4 
HOG + Curvature 94.5 86.2 0.4 1.4 
2× HOG + Curvature 94.9 86.5 0.4 1.3 
3× HOG + Curvature 94.8 86.0 0.4 1.3 
4× HOG + Curvature 94.8 85.6 0.4 1.3 

 

Table 2. Comparison among the curvature feature set, the novel texture based descriptors for 
curvature and their fusion.  

 

The best results among those reported in Table 2 (and all other combination of weights tested) are 

obtained coupling standard approach for representing curvature and 2×HOG; this ensemble is named 

CurvTexture in the following.  
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The third experiment aimed at comparing the performance of different descriptors presented in 

Section 2 coupled with two classification approaches: a random subspace ensemble of SVM 

classifiers, and a random subspace ensemble of rotation boosting. Moreover, the fusion of the two 

heterogeneous ensembles is reported (HET). In Table 3 the performance in terms of accuracy (ACC) 

and EUC are reported for the above cited approaches on both the datasets (REN and SELF) and for 

the following ensembles:  

• CurvTexture, the weighted sum rule between HOG extracted from the curvature image and 

Curvature (see the second experiment). 

• 2DTexure, weighted sum rule of 4×HOG+LTP+LPQ (evaluated on the color image). 

 

 

 

 

 

 ACC EUC 
Classification 
Approach 

Descriptors REN SELF REN SELF 

RS SVM Distance 86.9  57.2  1.1  7.1  
Curvature 92.4 84.0 0.5 1.8 
Palm 60.9 45.3 9.2 17.6 
Elevation 60.5 46.2 8.1 11.8 
CurvTexture 94.9 86.5 0.4 1.3 
2DTexure 95.5 88.1 0.4 1.2 

RS ROT Distance 88.8  60.5  0.9  5.7  
Curvature 93.9 84.9 0.4 1.3 
Palm 64.0 48.2 7.7 11.4 
Elevation 61.1 48.7 7.8 9.4 
2DTexure 94.7 88.0 0.6 1.0 

HET Distance 89.0  60.1  0.9  5.5  
Curvature 94.6 86.2 0.3 1.3 
Palm 63.6 48.0 7.6 11.7 
Elevation 61.5 49.2 7.1 9.5 
2DTexure 95.3 89.3 0.4 0.9 

 

Table 3. Comparison among classification methods and descriptors studied in this work.  



29 

 

 

The results reported in table 3 clearly show that RS ROT works well in this problem, although the 

fusion between RS ROT and RS SVM outperforms both the single approaches. As stated above, in 

order to avoid a large table the results obtained using stand-alone SVM are not reported, since it is 

outperformed by RS-SVM, as already shown in [36]. 

In Table 4 the performance of the complete approach obtained as the weighed fusion of different 

descriptors are reported and compared with other works from the literature. F1 and F2 denote different 

fusion weights:  

• F1=2×Distance + 4×Curvature + Palm + Elevation, is a fusion of the only geometric 

descriptors;  

• F2= 2×Distance +4×Curvature + Palm + Elevation+4×HOG+LTP+LPQ, involves both 

geometric and texture descriptors. 

 

 

 ACC EUC 
Approach Classification 

Approach 
REN SELF REN SELF 

[15]   - 97.2 87.1 0.3 1.8 
[14]  - 97.0 93.5 --- --- 
[36] - 97.9 88.7 0.1 0.9 
This work RS SVM (F1) 98.2 89.8 0.2 0.9 

RS SVM (F2) 99.3 95.0 0.1 0.5 
RS ROT (F1) 98.9 91.4 0.1 0.6 
RS ROT (F2) 99.8 94.6 0.1 0.4 
HET (F1) 99.1 92.6 0.1 0.6 
HET (F2) 99.9 96.0 0.1 0.3 

 

Table 4. Comparison among the approaches studied in this work and the literature.  

 

The results reported in Table 4 clearly show that the proposed weighted fusion of the classifiers, 

trained using different descriptors, greatly improves the performance reported in the literature. The 
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proposed approach has been compared with three of our works, e.g. [14], [15] and [36]. The approach 

presented in [15] uses two different geometry feature set, i.e., distance and curvature features.  A 

more performing approach is presented in a newer work [14], that uses all the 4 different geometric 

feature descriptors presented in this paper and a more refined version of the hand recognition and 

feature extraction scheme. The proposed scheme has also been compared with [36], where a more 

advanced SVM classifier has been employed. However, notice that the hand recognition and feature 

extraction scheme of this work and of [36] are based on [15], that presents a simpler version of the 

approach with respect to the one proposed in [14]. In particular, notice that the improved hand 

recognition and feature extraction scheme of [14] greatly improve the performance in the SELF 

dataset but slightly reduce the performance in the REN dataset. 

Another difference with two of our previous work is that in [14] and [15] a grid search to optimize 

parameters (for maximizing accuracy) was performed for each run of the fold, separately in each 

dataset. On the contrary, in this work we chose to not perform SVM parameters optimization5, to 

avoid overtraining, since both the datasets are small, and all the images of a given dataset are collected 

in the same laboratory (one in Padua and the other in US).  

 

Finally, for a statistical validation of the experiments the Wilcoxon signed rank test [1] is used, 

obtaining that the ensemble HET (F2) outperforms with a p-value of 0.05 all the previous methods 

both in the REN and SELF datasets.  

 

Moreover, the relationship among the different descriptors according to the Q-statistic [9] has been 

analyzed in order to evaluate their error independence (highest independence is obtained when Q-

statistic is 0). Table 5 reports the Q-statistic among several couples of descriptors tested in this work 

using RS-SVM as classifier. The results in Table 5 show a high independence among several couples 

                                                           
5 We use standard SVM parameters: radial basis function kernel, γ=0.1, C=1000  for both the datasets 
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of descriptors. Note how it is likely to discover independence among couples of weak classifiers, 

while it is rarer to find it on strong methods. From Table 5 it is evident the high independence between 

Curvature and 2DTexture which are very performing descriptors (this is the reason of the good 

accuracy of their fusion).  

Descriptors Distance Curvature Palm Elevation 2DTexure 
Distance --- 0.34 0.29 0.35 0.25 
Curvature --- --- 0.32 0.27 0.37 
Palm --- --- --- 0.21 0.22 
Elevation --- --- --- --- 0.32 
2DTexure --- --- --- --- --- 

Table 5. Q-statistic among the different descriptors.  

 

4. Conclusions 

In this chapter a hand gesture recognition system is proposed based on 7 different set of features 

computed on the hand shape and color that improve both in accuracy and reliability the methods of 

[14][15][36]. The main novelties here introduced are: an ensemble based on different descriptors, 

extracted from both the 3D information provided by a depth map and the color data; a new texture 

based descriptor extracted from the curvature image that improves the similar approach proposed in 

[36].  As in [36] two different classification systems have been used for improving the performance.  

The proposed system has been tested using the same datasets used in [14][15][36] obtaining very 

good performances outperforming previous works, as reported in Tables 3 and 4. 

Several future works have been planned for a further performance improvement: 

• new features based on the depth map and the inclusion into the proposed system of the more 

refined feature extraction scheme used in [14]; 

• new features based on texture descriptors, in particular the bag of words approach will be 

studied [39]; 

• extending the proposed approach to the recognition of dynamic gestures. 
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