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Abstract
Automatic hand gesture recognition is a challengiraplem that is attaining a growing interest due
to its applications in natural interfaces for husmaachine interaction, automatic sign-language
recognition, computer gaming, robotics and heaftthcd his chapter briefly reviews existing
approaches for automatic hand gesture recognifidrnpeoposes a novel system exploiting together
color and depth data. The proposed approach isllmasa set of four descriptors extracted from the
depth map and three texture descriptors extractad the 2D image, while the classification is
performed by an ensemble of support vector mactandslecision trees. A main novelty for feature
extraction is a method based on the histogram adignts used for describing the curvature image
obtained from the depth map.
Another novelty is the evaluation of different awhoetric spaces for improving the recognition
performance of the texture descriptors: the begbpeance is obtained using the lightness band of
the L*c*h* color space.
In the experimental Section the performances ofeifit “stand-alone” descriptors are firstly
compared and their correlation is analyzed for ssBg their complementarity, and eventually the
advantage gained by their fusion is demonstratetthéyVilcoxon Signed-Rank test.
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1. Introduction

Automatic hand gesture recognition [19] is a chrllag problem that is attaining a growing interest
due to its many applications in different fieldselinatural interfaces for human-machine interagtion
automatic sign-language recognition, computer ggnmmobotics and healthcare applications. While
many different approaches have been developedafut gesture recognition from 2D color images,
the use of range cameras or depth cameras fotasksis a novel research fieldn this chapter a
gesture recognition system is presented, exploitogether color data and the 3D geometry
information provided by a depth camera framingubker hand.

Until recently, most vision-based hand gesturegaitmn approaches were based on the analysis of
images or videos framing the hand. Complete reviefntke field may be found in literature ([19],
[20]). The bidimensional representation is not, beer, always sufficient to capture the complex
poses and inter-occlusions characterizing handigest

Three dimensional representations are instead a mimrmative description that represent the actual
shape of the hand in the framed pose. Furthermorgadays 3D data is easily obtainable thanks to
the recent introduction of low cost consumer degitineras. Devices such as Time-Of-Flight cameras
and Microsoft's Kinect™ [21] have made depth daigusition available to the mass market, thus

opening the way to novel gesture recognition apgres based on depth information.

Several different approaches have been proposeordar to exploit depth for hand gesture
recognition. The general pipeline is the samarfost of them, i.e. first a set of features is etd
from depth data and then various machine learmolgrtiques are applied to the extracted features in

order to recognize the performed gestures.



Kurakin et al [22] use silhouette and cell occupafeatures for building a shape descriptor that is
then fed into a classifier based on action grapladumetric features are extracted from the hand
depth and then classified by Support Vector Mach({&&/M) in both the approaches of [26] and [27].
In the work of Doliotis et al. [19] the trajectoof the hand is extracted from depth data and used
inside a Dynamic Time Warping (DTW) algorithm.

Randomized Decision Forests (RDFs) have also bged for the classification step in hand gesture
recognition in [30] and [31]. The latter also cands together color and depth information to
improve the classification results. Another keyeation is that depth data allows to perform an
accurate segmentation of the hand shape. For oesté®2] and [17] extract features based on the
convex hull and on the fingertips positions frone tilhouettes obtained in this way. A similar
approach is exploited in XKin [18], an open-sounead gesture recognition software. Histograms
of the distance of hand edge points from the hamdec have been used in [24] and [25] by Ren et
al.

Many gestures may not be recognized by only congsiglea static pose, and the recognition of
dynamic gestures is attracting a large intereggw&s and Basu [33] exploit the trajectory of thadh
centroid in the 3D space for dynamic gesture reitiogn A joint depth and color hand detector is
used to extract the trajectory that is then fed ynamic Time Warping (DTW) algorithm in [19].
Finally, Wan et al. [34] use the convex hull onirgke frame together with the trajectory of the

gesture.

In [15] two feature descriptors, one representitggdistance of the fingertips from the hand cedtro
and the other the curvature of the hand contourpcded on depth data, are used inside an SVM
classifier. A more performing ensemble is propasdd4], where two additional features were added
to the approach of [15], namely, one describingallegation of the fingers from the palm plane and

the other describing the shape of the palm area.



Starting from [14][15][36] this work follows thisationale as well and exploits a hand gesture
recognition scheme combining seven types of haadesfeatures extracted from both the depth map
and the color image framing the hand. Moreoveastaposes the choice of ad hoc colorimetric space
for the feature extraction from the color image #mel design of a performing ensemble that takes
into account the correlation among features at@dsed on the fusion of different classifiers.

The proposed ensemble is made of seven descrifdarsare extracted from the depth map (distance,
elevation, curvature, palm area) and three araete from the 2D image (local phase quantization,
local ternary patterns, histogram of gradients}eA&ccurate testing it has been found that feature
extraction from different colorimetric spaces i€fus for improving the performance of the texture
descriptors, therefore in this work the lightnessid of the L*c*h* color space is used for the
extraction of texture descriptors from the 2D image

Furthermore, a novel method for representing tmeature image before using it for training a given
classier is proposed based on the histogram ofegrisd

The classification task is carried out by meana beterogeneous ensemble of classifiers: a random
subspace of SVM classifiers and a boosting apprbaskd on decision trees (ROT) [12].

The reported results clearly show the usefulnessotabine different descriptors; the proposed
ensemble outperforms previous works in the sanesdts.

The chapter is organized as follows: Section fbauces the proposed gesture recognition system.

Section 3 contains the experimental results araljirsection 4 draws the conclusions.

2. Method overview

The proposed recognition pipeline, depicted in Higstarts from a 2D color image and the

depth map of the framed scene, and is based doltb&ing main steps:



reprojection: the depth data is projected over the 2D colorgenasing previously computed
calibration information in order to have properlygaed color and depth data in the same
reference system.

hand segmentation: the region corresponding to the hand is segmeinted the background
using both color and depth information;

color space transformation: the RGB input image is converted in the L band.af*h* color
space. This band has been selected among manys acdkethe one which obtained best
classification performance for the selected textlggcriptors;

geometric feature extraction: distance, elevation, curvature and palm feataregxtracted from
the hand region of the depthmap;

texture feature extraction: texture feature are extracted from the hand regidhe 2D image and
from a matrix representation of the curvature;

classification and fusion: each descriptor is classified by an ensemblevdfl @and an ensemble

of boosted decision trees, then these sets dfifitas are combined by weighted sum rule [2].
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Figure 1. Overview of the proposed approach.

2.1 Reprojection

The depth data acquired by the Kinect is firstlpj@cted on color image for the correct
alignment of color and depth data. In order toqanfthis task it is necessary to compute the possti
of the depth samples in the 3D space and themnojeqirthem back to the 2D color image reference
system. This requires the calibration data fordiyeth and color cameras of the Kinect that hava bee
previously computed by using the calibration metpoaposed in [35]. By the end of such alignment

a color and a depth value are associated to eaghlsa

2.2 Hand segmentation and palm recognition



The first step is the extraction of the depth samglorresponding to the hand region from the
depth map. For this purpose, the approach intratlucg14] and [15] is used and here briefly
resumed.

The proposed method starts by extracting from tuglieed depth map the closest point to the
camera, that will be denoted withnX (see Figure 2b).The algorithm automatically avaaselect
as Xmin an isolated artifact by verifying that the selég®int has close samples with a similar depth
according to the approach described in [15]. Atfiterselection of Xin, the seH of all the points X
with a depth value D(Xincluded in the range [, , Xmin + Th ] and with Euclidean distance from
Xmin in 3D space smaller than a thresh®ilgis computed:

H ={X;|DX) < DXmin) + Tn AMIXi — Ximinll < Tz}

Th and Tr2 are suitable thresholds whose values depend orughes hand size (in the
experimental result§w= 10cm andrnz = 30cm).

In the next step the color of the samples is chetakerder to verify if it is compatible with the
skin color. Finally, the detected hand size mustdrmapatible with the hand’s one [16]. This apptoac
allows to reliably segment the hand from the o#tane objects and body parts (as shown in Figure
2b). However a drawback of this scheme is that spants of the wrist and of the forearm may be

included in the extracted region.



d) e)

Figure 2. Extraction of the hand: a) RGB image; b) acquaedth image; c) computed hand mask
(the red point correspond tanX); d) blurred depth mask with C dotted in red; egraented hand

regions.(best viewed in colors, some images have been cropped to highlight the areas of interest)

A 2D mask corresponding to the hand samples irdépth image space is then built and the
related binary image is filtered by a low pass Gausfilter with a large standard deviation. The
value of the standard deviation is adaptive antesawith the distance of the hand from the Kinect,

as described in [15].



The maximum of the filtered image, which is thetstg point of the next step, is now detected.
Since the filter support is larger than the handl thie palm is larger than the forearm and denser th
the finger region, the computed maximum typicaikgsIsomewhere close to the center of the palm
region (see Figure 2c). In case of multiple powith the same maximum value, the closest X

is selected.

The following step of the proposed method is thecten of the largest circle, centered on the
maximum point cited above (denoted w@l that can be fitted on the palm region, as dbedrin
[15]. A more refined version of this procedure [18fs an ellipse in place of the circle in order to
better approximate the shape of the palm, espgaidien the hand is not perpendicular with the
optical axis of the depth camera.

The samples inside the circle (or inside the edjgselong to the palm. A plane in 3D space isditte
on them by using a robust estimator exploiting 8iagValue Decomposition and RANSAC. The
axis that roughly corresponds to the directionhef ¥ector going from the wrist to the fingertips is
then estimated by applying Principal Component psial(PCA) to the hand samples. This is a rough
estimation that gives only a general idea of thedhastimation but it is a good starting point foe t
feature extraction algorithm.

On the basis of the computed data, thedsistsubdivided into three sets as shown in Figdre 2

e The palm point®
* The wrist pointsW (this set contains both wrist and part of the dome and will be
discarded).

* The finger point$

Edge detection is finally applied to the pointdB¥Win order to build the hand contour points Eet

2.3 Color spacetransfor mation



Several colorimetric spaces have been evaluatednfproving the performance of the texture
descriptors. In particular the best performancebtined using the lightness band of the L*c*h*
color space. The CIE L*c*h* color space (Figurei8h device independent color model which is
essentially in the form of a sphere with three axes
The three components represent:

» Lightness (a vertical axis from 0 to 100, i.e., absolutecklto absolute white)

» Chroma (a horizontal axes from 0 at the center of theleito 100, i.e., from neutral

grey, black or white, to “color purity”)
* Hue (a circular expressed in degrees from 0° to 36€3resenting different colors

°=red, 90°=yellow, 180°=green, 270°= blue).

LCH colour space

L!'

lightness ——=

Figure 3. L*c*h* color space(best viewed in colors)

2.4 Geometric Feature Extraction
2.4.1 Distance features
Distance features, introduced in [15] on the basia previous idea from [24], represent the

distance of the finger sampleskrfrom the hand centroi@.
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For each sampl&;in F the Euclidean distancé(X;) in 3D space from the centroid is
computed. The various samples are sorted on the diahe anglé(X;) between the projection on
the palm plane of the PCA principal axis and ofwihetor connecting each poiXy to the centroid.

A histogram representing the maximum of the distainem the centroid for each angular direction

is then built:

L(B) = max d(X;)
e—7<e(xi)<e+%

WhereA is the quantization step for the histogram compuigA=2° has been used). For each
gestureg in the database, a reference histogkgns built. A set of angular regions corresponding t
the direction of the various fingers that are usegach gesture is then defined on this histogsaa (
Fig.4b). These regions correspond to the positfaaoh finger in each gesture and will be used for

computing the distance features.

In order to precisely extract the regions corresigamnto the various fingers, it is necessary to
align the computed histogranhg6) with the template on which the regions are defirfeat this
purpose, the maximum of the correlation betweeratitgiired histogram and the translated version
of the reference histogram of each gesture is ctedpdThe computation is also performed with the
flipped version of the histogram in order to acdolan the fact that the hand could have either the
palm or the dorsum facing the camera, and that thetheft and the right hand could have been used.
The maximum between the two cases is selected fddrresponding translation gives the
translational shift required to align the acquirestogram with the reference one (together with the
flipping if it was selected). Note how there can @alifferent alignment for each gesture. This
approach basically compensates for the limitedipiat of the direction computed by the PCA, and
allows to precisely align the reference and the mated histograms. In this way, the regions

corresponding to the various features of the gestre precisely defined. Fig. 5 shows some examples

11



of the computed histograms for three different gest The plots clearly show the different fingers

arrangements in the various gestures.

a) b)

Figure 4. Histogram of the 3D distances of the edge sanfpdesC. The colored areas are the
features regions: a) finger edges computed ffomb) corresponding histogram@)(with the

regions corresponding to the different features.

12



Sample image Distance histograms corresponding to various rapes of the
esture
of the gesture 9

8 1 8o 8o

& 5 5

708 708 708

Ops Bos Dos

o o o

Hoa Hoa Hoa

Zo2 2oz 202

5] P S AL S / -

Z fo w0 0 90 Z fo w0 0 90 Z P w0 0 90
6 [Degrees] 0 [Degrees] 0 [Degrees]

8 1 g1 - g 1 -

& & i 5 o

.‘E 0.8- ; "I “I -E 0.8- i :‘ 1 -E 0.8- ‘ :\I "‘ ’

Oy i Qos i E Qos RN

e [ he] p o | he] T

g 0.4- B ‘.‘ [ g 0.4- N ‘,; 14 i g 0.4- | ‘u ! I v

So2 S Loz A I 2oz Y

G . RTE G : ) G : R

Z %o 0 0 90 Z o 0 90 Z Do g0 0 90
6 [Degrees] 8 [Degrees] 0 [Degrees]

8 1 81 8

5 g f g

@08 ‘ 708 no Foe .“

Qe | Do ik o Do |

3 ‘ B B

N 0.4 ; N04 : ; Mo ‘ ]

Zo2 | Eo2 ok Eo2 i

G . Y S U S Y RA

Z P 90 0 90 Z B w0 0 90 Z B w 0 90
6 [Degrees] 0 [Degrees] 0 [Degrees]

Figure5. Examples of distance histogram for some samplads from different gestures.
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The distance features $étcontains a feature value for each finger each gesturg €
1,..G. The number of raised fingers is different in egebture, and so also the number of feature
values is different. The feature vaug% associated to finggrn gesturey is the maximum of the

aligned histogram in the angular region correspagtl the fingef in gestureg (see Fig. 4b), i.e, :

“max  LI(9) - TF
min max
omin<o<oM

Lmax

Where@ﬁ" and 67" are the extremes of the region correspondinggefij in gestureg,

L2(8) is the aligned version of the computed histogranis the radius of the circle (or the distance
from Cy to the ellipse border). The lengthdx of the middle finger is used to normalize with
respect to the hand size in order to make the apprimdependent from the size of the hands of
different people. The radiusneed to be subtracted from all the features fordang the jump from

0 tors of the values when the edge crosses the ciretiebo

In this way up tdG*5 features are built for each acquired sample éittaal number is smaller
since not all the fingers are of interest in ak tpestures). For instance, the dataset used in the
experimental results taken from the work of Remle{25] contains 10 different gestures and 24
features have been used, about a half of the Sirésathat there would be if all the fingers wesedi

in all the gestures.

2.2.2 Curvaturefeatures
The second descriptor represents the curvatutegeagédges of the hand shape in the depth map. The
proposed algorithm is based on integral invari§2® and exploits the hand edge poi&tsand the

maskMn representing the hand samples in the depth mapr@-RDb).
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For each poink; in E a set of S circular mask&,(X;), s = 1,..S centered oiX; with radius varying
from 0.5 cm to 5 cm is built. The rati(X;, s) between the number of samples inside each circular
mask that belong also to the hand mask and thérataber of samples in the mask for is then
computed, i.e.:

|Ms(X;) N Mp|

VXes) = @)

Note how the radius valigactually corresponds to the scale level at whiehféature extraction is
performed. Differently from [23] and other approashthe radius is defined in metrical units, thus
making the descriptor invariant with respect todistance of the hand from the camera.

The values oV (X;,s) characterize the curvature of the region arountgp$aX;. The minimum value

V(X;,s) = 0 corresponds to an extremely convex sh#|§&;,s) = 0.5 to a straight edge and the
maximumV (X;,s) = 1to an extremely concave shape. The [0, 1ivates quantized into B bins of
equal size. Letysbe the set of the finger edge poififss E with the corresponding value BtX;, s)

falling in each bin:
b—-1 b
Vs ={ Xi| 5= < V(X,5) < 3}
whereb is the bin index. Curvature features are giverthgycardinalities of the setg, || for each

bin b and radius valusnormalized with respect to the hand contour lenigthx

fc — |Vb,S|
" IE]

In this way a feature vect&f containingB* Sfeatures is built. As expected, the value of tiffeknt
curvature features depends on the positions dirigers not folded on the palm region and on their
arrangement, thus giving an accurate descriptiothefhand gesture. An example of curvatures

vectors, arranged in a 2D matrix and visualizedhwdlor maps, is reported in Fig. 6.
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Figure 6. Examples of curvature descriptors for some saifinphees from different gestures.

2.2.3 Elevation features
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The construction of the elevation features is basethe same scheme employed for the distance
features in Section 2.2.1.: first an histogram eéspnting the distance of each sampl& iftom the
palm planer is built, namely, for each sampg in F its distance from planeis computed:

A=ex = sgn((X; — XP) - ip|X;— X7 |, X, € F
whereXj' is the projection ofx; ont. The sign ofexj accounts for the fact thXj can belong to any

of the two hemi-spaces defined dyi.e., Xj can either be on the front or behind
Then, following the scheme used for distance featufor each angular sector (represented by a
guantized valu®q) the point with the greatest absolute distancenftbe plane is selected, thus

producing an histogram &J:

ey, |maxey.[> [min ey,

E(0,) = z(eq) X i@y X 10g) %

min ey, otherwise
1(0g) ™7

The quantization uses the same intervals usedistarate feature in Section 2.2.1. The histogram
E(®) corresponding to the performed gesture is themedl to the various reference gesture§in
using the alignment information already compute®aattion 2.2.1, and it is subdivided in different
regions corresponding to the various fingers agdonthe distance features. Le{®) be histogram

E(®) aligned with the § gesture template. The elevation features aredberputed according to:

(

max E9(0) | max E9(0)| > | mm E9(0)
fe Linax 1(8g,)
9~

min E9(0) otherwise
Limax 1(8g,)

Where the interval$(0, ;) are again the same used for distance features.tNatt¢he alignments
computed in Section 2.2.1 are used here both #® @awputation time and because the correlations
from distance data are more reliable than the coegputed on elevation information. Finally note
that the vectoF® of the elevation features has the same structutenamber of elements of the

vectorF! of the distance features.
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2.2.4 Palm area features

The last set of features describes the shape qidine regiorP. Note thatlP corresponds to the palm
area, but it may also include finger samples whenfingers are folded over the palm. The palm
region is partitioned into six different areas,idefl over the plang(see Fig. 6). The circle or ellipse
defining the palm area is firstly divided into tyarts: the lower half is used as a reference fer th
palm position since it is not occluded by the firsg@ most gestures, and a 3D plapas fitted on
this region.

The upper half is divided into 5 regioAs j = 1, .., 5 roughly corresponding to the regicitse to
the different fingers as shown in Fig. 7, i.e.,lee@gion corresponds to the area of the palm that i
affected by the position of the associated firaged where the finger can potentially fold.

The various area features account for the defoomatie palm shape undergoes in the corresponding
area when the related finger is folded or is moWegarticular, notice how the samples correspomdin
to the fingers folded over the palm are associtwdtland are not captured by distance or elevation
features, but they are used for the computatiqrabh area features.

The areas positions on the plane depend on trewioly parameters:

* The palm area, represented by the ce@itend the radiusr of the circle (or by the two axes
of the ellipse if this representation is used)

* The widths of the various fingers. A standard suisthn of the upper half of the circle has
been used for the experimental results, but itatsm be optimized on the basis of the specific
user's hand.

* The direction¥ corresponding t® = 0.

Since the centeZt and radiuss or axes have already been computed in Sectiothz bnly missing
element is the alignment of th@ directions. Again, the correlation of the distariastograms
computed in Section 2.2.1 is used to align theoregitemplate with the hand directidn The

templates are also scaled bgor scaled and stretched according to the two ek#te ellipse).
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The templates are then aligned with the acquired dsing the alignment information computed in
the previous steps. In this way an area features sttracted for each candidate gesture. The areas

aligned with the template of each gesture will nated with A].g, where g indicates the
corresponding gesture. The set of points R associated to each of the regiﬂ]ﬂsis then computed.
Finally, the distance between each sample Xéljg andmp is calculated for each regimj’ .

The feature corresponding to the aaﬁais the average of the distances of the samplesbielg to

the area from planerp:

ineA‘?”Xi _XZT”
fa' — J
9,

9
7]
The area features are collected in a veletpmade by G x 5 area features, one for each fiimgegich

possible gesture, following the same rationale uUsed=' and Fe. The entries of? are finally

normalized in order to assume values within rafigd | as the other feature vectors.

Figure 7. Regions used for the computation of the palm teatures.
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2.5 Texturefeature extraction
In this work three texture descriptors are extrdieth from the 2D image and from a matrix
representation of the curvature. Three well-knowsatiptors are used: Local Phase Quantization

(LPQ) [3], Local Ternary Patterns (LTP) [28] andstéigram of Gradients (HoG) [29].

2.5.1 Extracting texture feature from curvature

Since curvature is very significant for hand repreation, in this work two different types of
descriptors are extracted from curvature infornrattbe standard geometrical measures of curvature
(explained in section 2.2.2) and other numericacdptors designed to take into account local
variation. Following the approach proposed in Ebnatrix representation is used for curvature data,
obtained by simply rearranging the linear featweetor as a matrix: in this way, relevant informatio
can be extracted from the Curvature using well-kmésxtural descriptors, which have the ability to
well represent shape variations due to gesturesrder to make results independent from the
evaluation order, 50 different random reshapingsused (see figure 8) to rearrange the curvature
vector as a matrix and then texture descriptorean@cted from each resulting matrix. Since local
texture features measure local variations, theysaited to measure the discriminative information
present in the local neighborhoods of each pixel,(the curvature value in this case). The use of
different reshaping arrangements makes possiladbgerve and encode different aspects of curvature
variations from a single curvature vector. Eacltcdptor extracted from a reshaped matrix is used to
train a SVM classifier to be combined in an ensemising the sum rule. Due to computational issue,

for this descriptor, the ensemble of decision tise®t used.
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Figure 8. Reshaping a vector into a matrix.

2.5.2 Local phase quantization

Local Phase Quantization (LPQ) [3] is a texturecdpsor based on quantizing the Fourier transform
phase in local neighborhoods of a point. Histogram<PQ labels computed within local regions are
used as texture descriptor similarly to the weldkn Local Binary Patterns [37].The extraction of
LPQ is performed using a short-term Fourier tramsfon local neighborhoods at each pixel; this
transform is efficiently computed for the whole igesby a 1-D convolution for the rows and columns
successively. Then, only four complex low-frequegogfficients are considered and quantized by
observing the signs of the real and imaginary pafteach component. In this work the final
descriptot is obtained by the concatenation of histogramainbtl with two settings of the parameter

radius R which denotes the neighborhood size (RR-35).

1 The MATLAB code for LPQ is freely available attfwww.cse.oulu.fi/ CMV/Downloads/LPQMatlab
21



2.5.3 Histogram of gradients

The histogram of oriented gradients (HoG) [37] &sdd on the idea that local shapes can be
characterized rather well by the distribution afdbintensity gradients. HoG descriptor is extrdcte
by dividing the image into small cells and calculgta local 9-bin equi-width histogram of gradient
directions (discretized in 9 bins) over the cefler better invariance to illumination and shadows
histograms are contrast-normalized within a larggion (blocks of cells) and their combination is

the final descriptor.

25.4 Local ternary patterns

Local binary pattern (LBP) [37] is a widely usedttee descriptor based the encoding of the pixel
differences between the neighboring pixels anaédmter pixel in a local region of an image. Due to
its sensitivity to noise, several variants havenbg@®posed [38], including the Local Ternary Patter
(LTP) [28] which encode the pixel difference betwelee center pixgbc and the neighboring pixels
pn using a ternary code, according to a thresholdif pn>pc+1t; -1 ifpn<pc—t; else 0. LTP is
less sensitive to noise as the small pixel diffeeeis encoded into a separate state. To reduce the
dimensionality, the ternary code is split into tiMoary codes: a positive LBP and a negative LBP.
The final LPT descriptor is the concatenation ef hilstograms computed from positive and negative
LBP. In this work a multi-resolution version of LTi® obtained by the concatenation of descriptors
evaluated at different neighborhood sizes: (PR 8;1) and (P = 16; R = 2). Two implementation of
LTP are tested: LTPu, where the uniform bins ameswtered, and LTPri, where rotation invariant
bins are considered. The interested reader caf33¢dor more details on uniform and rotation

invariant bins.

2.6 Classification

2.6.1 Random Subspace Ensemble of Support Vector Machines
22



Due to the high dimensionality of the descriptonsl ahe low cardinality of the sample dataset,
automatic hand gesture recognition is a difficudssification task. In order to deal with this
“dimensionality curse” problem a random subspac®) @ semble [4] is used for classification, since
PS has proven to be effective in these cases. B¥asid approach for designing ensembles based
on the perturbation of features: each classifigramed on a training set obtained by reducing the
dimensionality of the data by randomly subsamplivgfeatures.
Given a collection o training samples; = (x;q, Xi2, ..., Xiy) , X; € RN, RS randomly selects <
N features from the original feature space and eseatnew training set by projecting each sample
into RX . This procedure is repeatedimes wherd. is the number of final classifiers combined by
the sum rule to obtain the final decision. In thizrk the two RS parameters are fixed N/ 2,M =
50 and support vector machines (SVM) [11] from N&toolbox? are used as classifiers.

As already shown in [36] the RS ensemble of SVMpetfbrms the standard SVM classifier,

therefore stand-alone SVM has not been testedsmibrk.

2.6.2 Random Subspace Ensemble of RotBoost with NPE (RSR)

In order to exploit the diversity of classifiersatimer ensemble is tested: a variant [12][13] of
Rotation Boosting (RotBoost) [7][10] coupled witietNeighborhood Preserving Embedding (NPE)
[8], which is a dimensionality reduction method.

RotBoost is designed as the integration of AdaBfddtand Rotation Forest [7], two ensemble
generation techniques that apply a learning algarito a set of permutated training sets. AdaBoost
iteratively constructs successive training seteglmeighting the original one in order to betterdice
the samples misclassified in the previous stepatitwt Forest builds each training set by randomly
split into S subsets the original feature space and reducngdintensionality by applying Principal

Component Analysis (PCA).

2 LibSVM toolbox http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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A variant of RotBoost[12][13] is used in this work, obtained by coupglithe ensemble with
RS and by using the neighborhood preserving emhgdtPE) feature transform instead of PCA
for dimensionality reduction. First dimensionaligduction by NPE is applied and a Rotation Matrix
is calculated to map original data into a new feafipace (as in RotationForest), then base classifi
are built by applying a RS to the AdaBoost techaiqu
Neighborhood Preserving Embedding (NPB] is a technique for dimensionality reductionigh
aims at preserving the local neighborhood structuredata manifold; it has proven to be more
effective than PCA in discovering the underlyinghtweear structure of the data and less sensitive to
outliers than other feature transform. NPE stastsbhilding a weight matrix to describe the
relationships between samples: each sample isided@as a weighted combination of its neighbors;
then an optimal embedding is selected such than#ighborhood structure is preserved in the
reduced space. It is useful to highlight severpkats of NPE (see [8] for more details):
* NPE is linear (it is a linear approximation of Légd.inear Embedding) so it is fast and
suitable for real-time applications;
* NPE can be performed in either supervised or unsigeel mode. When the labels of the
training patters are available they can be usefiddding a better weight matrix.
NPE procedure is based on three step:
» constructing an adjacency graph, usiri{ mearest neighbors method;
» Computing the weights of the edge between the noftiiee graph;

» Computing the Projections: a linear projectionsasmputed

3 Source code [16] available at http://www.dei.unigpaidyn/?1Dsezione=3314&IDgruppo_pass=124.
+ MATLAB code available fronmhttp://www.cad.zju.edu.cn/home/dengcai/Data/DimenRieduction.html
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3. Experimental Results

In this section the experiments performed on twitedint datasets are discussed. The first [24],
named REN, contains 10 different gestures performedlO different people (Fig. 9) and acquired
with Microsoft's Kinect. Each gesture is repeat@dithes for a total of 1000 different samples.

The second dataset [14], named SELF, has alsodwegiired with the Kinect, and is a self-collected
dataset which contains 12 different gestures (dl smibset of the American Sign Language gestures)
performed by 14 different people (Fig. 10). Eacktgee is repeated 10 times for a total of 1680

samples (depth maps and the corresponding colgyes)a

Figure 9. Sample color images of the 10 different gesturd3iN.

G7 G8 G9 G10

Figure 10. Sample color images of the 12 different gesture3ghF.
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The experiments have been carried out accordintiieeleave-one-out user” in both the datasets:
the samples fror\-1 users are used for the training set and the sanam the remaining user for
the test set. Then the obtained results are avéi@geng all thél experiments obtained by varying

the user in the test set.

The performance indicators used to compare theréifit approaches are accuracy (ACC), i.e. the
proportion of true results (both true positives ane negatives) in the population, and error under
the ROC curve [2] (EUC), i.e. 1-AUC. AUC is a onimdnsional performance indicator obtained as
the area under the curve (ROC) which plots thetibaof true positive rate vs. the false positives
rate at various threshold settings. The AUC mantepreted as the probability that the systenh wil

assign a higher score to a randomly chosen posstiveple than to a randomly chosen negative
sample. In a multiclass problem as hand gestuiegretion, the one-versus-all EUC is considered

for each class [6] and the reported EUC value fainbd by averaging all class values.

The first experiment aimed at selecting the mogtr@priate color space for performing texture
feature extraction (using a stand-along SVM cla&ssifIn this experiments an exhaustive search
among 14 different color spaces is performed ireotd find out the most appropriate space for this
case study. In Table 1 the accuracies obtainedhdyhree texture descriptors presented in Section
2.5 are evaluated as a function of the input cbkrd (only the best five color bands are reported,
considering theHOG descriptor). As stated in Section 2.3 the bestcehis the band L of L*c*h*.

From the reported results it is clear thatltheands work well for all the descriptors.
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Ren Self
Color Band LTP LPQ | HOG | LTP LPQ | HOG
Gray ValuesfromRGB | 70.3%| 77.0%| 94.1%| 60.7% | 66.7%| 85.2%
L of L*c*h* 71.6%| 77.4%)| 95.3%| 63.9%| 67.3%| 87.0%
L of Luv 71.6%| 77.4%)| 95.3%| 63.9%| 67.3%| 87.0%
L of Lab 71.6%| 77.4%)| 95.3%| 63.9%| 67.3%| 87.0%
Sof HSV 26.2%| 70.4%| 92.6%| 17.0%| 55.4%| 86.8%
Cr of YCbCr 55.2%| 57.1%| 93.5%| 49.6%| 57.6%| 85.8%

Table 1. Comparison among different color bands in termaocatracy.

The second experiment aimed at validating the @isexture descriptors on the curvature extracted
from the 2D image. In table 2 the performance olgtdiby texture descriptors coupled with the matrix
representation of the curvature are reported (IsTidt reported since it is not suited for reprasgnt
directly the curvature image which is not a greselemage).

The classification task is performed by means okeasemble SVM classifiers, which combines

results obtained according to different rearrangemef curvature data (see section 2.5.1).

ACC EUC
Classification Feature set REN | SELF | REN | SELF
Approach
Ensemble of SVMq Curvature 92.4| 82.7| 05| 2.0
LPQ 91.0( 80.9| 0.8 | 1.8
HOG 947 846 | 04 | 1.4

HOG + Curvature |945| 86.2| 0.4 | 1.4
2x HOG + Curvaturd 949 | 86.5| 0.4 | 1.3
3x HOG + Curvaturd 94.8| 86.0( 0.4 | 1.3
4x HOG + Curvaturg 94.8| 856 | 0.4 | 1.3

Table 2. Comparison among the curvature feature set, theltexture based descriptors for
curvature and their fusion.

The best results among those reported in Tablen@ & other combination of weights tested) are
obtained coupling standard approach for represgitinvature and 2xHOG,; this ensemble is named

CurvTexture in the following.
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The third experiment aimed at comparing the peréorce of different descriptors presented in
Section 2 coupled with two classification approacha random subspace ensemble of SVM
classifiers, and a random subspace ensemble diorotaoosting. Moreover, the fusion of the two
heterogeneous ensembles is reported (HET). In Tatile performance in terms of accuracy (ACC)
and EUC are reported for the above cited approachdmth the datasetREN andSELF) and for
the following ensembles:

* CurvTexture, the weighted sum rule between HOGaextd from the curvature image and

Curvature (see the second experiment).

o 2DTexure, weighted sum rule of 4xHOG+LTP+LPQ (eatdd on the color image).

ACC EUC
Classification REN | SELF | REN | SELF
Approach
RS SVM Distance 86.9|57.2 (11 |7.1
Curvature [92.4|84.0 (05 |1.8
Palm 60.9|45.3 |9.2 |17.6
Elevation 60.5|46.2 (8.1 |11.8
CurvTexture[ 94.986.5 |04 | 1.3
2DTexure |955(88.1 |04 |1.2
RS ROT Distance 88.8|60.5 |09 |57
Curvature 93.9|1849 (04 |1.3
Palm 64.0(48.2 | 7.7 |11.4
Elevation 61.1|48.7 | 7.8 |9.4
2DTexure |94.7|88.0 |0.6 |1.0
HET Distance 89.0/60.1 |09 |55
Curvature 946|86.2 (0.3 1.3
Palm 63.6(48.0 | 7.6 |11.7
Elevation 61.5(49.2 | 7.1 |95
2DTexure (953893 |04 |09

Table 3. Comparison among classification methods and ddscsigtudied in this work.
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The results reported in table 3 clearly show th&tRROT works well in this problem, although the
fusion between RS ROT and RS SVM outperforms bothsingle approaches. As stated above, in
order to avoid a large table the results obtair@dgustand-alone SVM are not reported, since it is
outperformed by RS-SVM, as already shown in [36].
In Table 4 the performance of the complete appradithined as the weighed fusion of different
descriptors are reported and compared with otheksifoom the literature. F1 and F2 denote different
fusion weights:

* F1=2xDistance + 4xCurvature + Palm + Elevationaidusion of the only geometric

descriptors;
e F2= 2xDistance +4xCurvature + Palm + Elevation+4&@+QTP+LPQ, involves both

geometric and texture descriptors.

ACC EUC
Approach | Classification | REN | SELF | REN | SELF
Approach
[15] - 97.2187.1 (0.3 | 1.8
[14] - 97.0[(935 [--- |---
[36] - 97.9/188.7 [0.1 | 0.9

This work | RS SVM (F1)[ 98.2]89.8 | 0.2 | 0.9
RS SVM (F2)| 99.3|95.0 [0.1 |05
RS ROT (F1)| 98.9/91.4 [0.1 |06
RS ROT (F2)| 99.8|94.6 |0.1 | 0.4
HET (F1) 99.1]/92.6 0.1 |06
HET (F2) 999 (9.0 |01 |03

Table 4. Comparison among the approaches studied in thik amf the literature.

The results reported in Table 4 clearly show that pfroposed weighted fusion of the classifiers,

trained using different descriptors, greatly imgethe performance reported in the literature. The
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proposed approach has been compared with thrae efaks, e.g. [14], [15] and [36]. The approach
presented in [15] uses two different geometry fieatet, i.e., distance and curvature features. A
more performing approach is presented in a newek yid|, that uses all the 4 different geometric
feature descriptors presented in this paper anar@ nefined version of the hand recognition and
feature extraction scheme. The proposed schemald@abeen compared with [36], where a more
advanced SVM classifier has been employed. Howengice that the hand recognition and feature
extraction scheme of this work and of [36] are dase [15], that presents a simpler version of the
approach with respect to the one proposed in [[Mparticular, notice that the improved hand
recognition and feature extraction scheme of [14jatdy improve the performance in the SELF
dataset but slightly reduce the performance irRB&l dataset.

Another difference with two of our previous worktieat in [14] and [15] a grid search to optimize
parameters (for maximizing accuracy) was perforfoedeach run of the fold, separately in each
dataset. On the contrary, in this work we chosadbperform SVM parameters optimizattpmo
avoid overtraining, since both the datasets ardl samal all the images of a given dataset are ctah

in the same laboratory (one in Padua and the atHgg).

Finally, for a statistical validation of the expeents the Wilcoxon signed rank test [1] is used,
obtaining that the ensemble HET (F2) outperformih \&i p-value of 0.05 all the previous methods

both in the REN and SELF datasets.

Moreover, the relationship among the different desars according to the Q-statistic [9] has been
analyzed in order to evaluate their error indepandghighest independence is obtained when Q-
statistic is 0). Table 5 reports the Q-statistioamseveral couples of descriptors tested in tloikw

using RS-SVM as classifier. The results in Tab#ndw a high independence among several couples

> We use standard SVM parameters: radial basisitmkernel;y=0.1, C=1000 for both the datasets
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of descriptors. Note how it is likely to discoverdependence among couples of weak classifiers,
while it is rarer to find it on strong methods. Frdable 5 it is evident the high independence betwe

Curvature and 2DTexture which are very performimgaliptors (this is the reason of the good

accuracy of their fusion).

PBESEHiptersy Distance] Curvature] Palm] Elevation| 2DTexure
Distance == 0.34 0.29 1 0.35 0.25
Curvature | --- 0.32 | 0.27 0.37
Palm == e == 0.21 0.22
Elevation | --- 0.32
2DTexure | -

Table5. Q-statistic among the different descriptors.

4. Conclusions

In this chapter a hand gesture recognition systeproposed based on 7 different set of features
computed on the hand shape and color that improtreib accuracy and reliability the methods of
[14][15][36]. The main novelties here introduce@:aan ensemble based on different descriptors,
extracted from both the 3D information provideddgepth map and the color data; a new texture
based descriptor extracted from the curvature intlagieimproves the similar approach proposed in
[36]. As in [36] two different classification syshs have been used for improving the performance.
The proposed system has been tested using the dstasets used in [14][15][36] obtaining very
good performances outperforming previous worksepsrted in Tables 3 and 4.
Several future works have been planned for a fupteeformance improvement:
* new features based on the depth map and the ianlusio the proposed system of the more
refined feature extraction scheme used in [14];
* new features based on texture descriptors, incuéati the bag of words approach will be
studied [39];

» extending the proposed approach to the recognitiatlynamic gestures.
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