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ABSTRACT

Scene segmentation is a very challenging problem for which color
information alone is often not sufficient. Recently the introduc-
tion of consumer depth cameras has opened the way to novel ap-
proaches exploiting depth data. This paper proposes a novel seg-
mentation scheme that exploits the joint usage of color and depth
data together with a 3D surface estimation scheme. Firstly a set of
multi-dimensional vectors is built from color and geometry informa-
tion and normalized cuts spectral clustering is applied to them in or-
der to coarsely segment the scene. Then a NURBS model is fitted on
each of the computed segments. The accuracy of the fitting is used
as a measure of the plausibility that the segment represents a single
surface or object. Segments that do not represent a single surface are
split again into smaller regions and the process is iterated until the
optimal segmentation is obtained. Experimental results show how
the proposed method allows to obtain an accurate and reliable scene
segmentation.
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1. INTRODUCTION

Scene segmentation by way of images has attracted a huge amount
of research, but it is an ill-posed problem and remains a very chal-
lenging task. Many segmentation techniques based on different in-
sights have been developed, e.g., approaches based on graph theory
[1], on clustering algorithms [2, 3], on region splitting and merging,
and on many other techniques. The recent introduction of matricial
Time-of-Flight range cameras and structured-light consumer depth
cameras (e.g., Microsoft Kinect) has opened the way to the oppor-
tunity of combining depth information together with the color infor-
mation for scene segmentation purposes. Within this perspective the
segmentation problem can be formulated as the search for effective
ways of meaningfully partitioning a set of samples featuring color
and geometry information. Note how this is close to what happens
inside the human brain where the disparity between the images seen
by the two eyes is one of the clues used to separate the different
objects in a scene together with prior knowledge and other features
extracted from the color data acquired by the human visual system.

It is a very recent research field but some works addressing scene
segmentation by way of color and geometry information have re-
cently been published. A first possible solution is to perform two
independent segmentations from the color image and the depth data,
and then join the two results [4]. In [5] two likelihood functions,
based on color and depth data, are combined together in order to seg-
ment the background from the foreground. Two different approaches
for the segmentation of binocular stereo video sequences are pre-
sented in [6]: one, based on Layered Dynamic Programming and
the other based on Layered Graph Cuts. Some other recent works
try to jointly solve the segmentation and stereo disparity estimation

Fig. 1. Overview of the proposed approach.

problems, e.g., [7] and [8]. Clustering techniques can be exploited
for joint depth and color segmentation as in [9] and [10]. In [11] we
proposed a segmentation scheme based on spectral clustering that is
able to automatically balance the relevance of the two clues. This
paper proposes a novel scene segmentation scheme that includes the
approach of [11] inside an iterative scheme where the segmentation
is progressively refined by recursively splitting the segments that do
not represent a single surface in the 3D space. The check is per-
formed by fitting a NURBS surface over each segment and analysing
the accuracy of the fitting.

The paper is organized in the following way: Section 2 presents
the general workflow of the segmentation algorithm. Section 3
briefly recalls the employed joint color and depth segmentation
scheme, while Section 4 presents the employed surface fitting algo-
rithm. Finally Section 5 shows how the two steps are combined into
the proposed approach. The results are presented in Section 6 and
Section 7 draws the conclusions.

2. GENERAL OVERVIEW

Fig. 1 shows a general overview of the proposed approach. The color
image and depth map are firstly converted to a unified representation
and then fed into the proposed iterative segmentation algorithm. The
acquired data is segmented into two clusters using both color and
depth information [11]. Then a NURBS model is fitted over each
of the two segments. The accuracy of the fitting is compared to
the one obtained in the previous step for the same cluster (except
for the first iteration). If the segmentation has allowed to obtain a



better fitting the process is iterated by recursively splitting the two
segments, otherwise it is stopped. The process is iterated until it is
not possible to obtain any improvement by further subdividing any
of the produced segments.

3. JOINT COLOR AND DEPTH SEGMENTATION

Following an approach similar to [11] and [12], before entering the
main loop of the proposed algorithm, a six-dimensional representa-
tion of the scene samples is built from the geometry and color data.
After the joint calibration of the depth and color cameras it is pos-
sible to compute the 3D coordinates x,y and z of the 3D point of
the scene corresponding to each sample in the depth map and to
associate to it a vector containing the R, G, and B color compo-
nents. Geometry and color then need to be unified in a meaningful
way. Color values are converted to the CIELab perceptually uniform
space, i.e., each sample pi is represented by the vector

pc
i = [L(pi), a(pi), b(pi)]

T , i = 1, ..., N (1)

Geometry can be simply represented by the 3D coordinates x(pi),
y(pi), and z(pi), i.e. as:

pg
i = [x(pi), y(pi), z(pi)] , i = 1, ..., N (2)

The scene segmentation algorithm should be insensitive to the
relative scaling of the point-cloud geometry and should bring ge-
ometry and color distances into consistent representations, therefore
the geometry components are normalized by the average σg of the
standard deviations of the point coordinates obtaining the vectors
[x̄(pi), ȳ(pi), z̄(pi)]. Following the same rationale, the color in-
formation vectors [L̄(pi), ā(pi), b̄(pi)] are obtained by normalizing
color data with the average σc of the standard deviations of the L, a
and b components. From the above normalized geometry and color
information vectors, each point is finally represented as:

pf
i =


L̄(pi)
ā(pi)
b̄(pi)
λx̄(pi)
λȳ(pi)
λz̄(pi)

 , i = 1, ..., N (3)

where λ is a parameter balancing the contribution of color and ge-
ometry. High values of λ increase the relevance of geometry, while
low values of the parameter increase the relevance of color informa-
tion. For more details on the effect of this parameter and on how to
automatically set it see [11].

The computed 6D vectors are then clustered in order to segment
the acquired scene. Normalized cuts spectral clustering [3] is an ef-
fective approach for this task. This method is based on the partition
of a graph representing the scene according to spectral graph the-
ory criteria. The minimization is done using normalized cuts and
accounts both for the similarity between the pixels inside the same
segment and the dissimilarity between the pixels in different seg-
ments. The algorithm is very computationally expensive and several
methods have been proposed for its efficient approximation. In the
method based on the integral eigenvalue problem proposed in [13],
the set of points is first randomly subsampled and then the subset
is partitioned and the solution is propagated to the whole points set
by a specific technique called Nyström method. In order to avoid
small regions due to noise a final refinement stage removing regions
smaller than a pre-defined threshold Tp is applied.

4. SURFACE FITTING ON THE SEGMENTED DATA

NURBS (Non-Uniform Rational B-Splines) are piecewise rational
polynomial functions expressed in terms of proper bases, see [14]
for a thorough introduction. They allow to represent freeform para-
metric curves and surfaces in a concise way, by means of control
points. A parametric NURBS surface is defined as

S(u, v) =

∑n
i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,jPi,j∑n

i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,j

(4)

where the Pi,j are the control points, the wi,j are the corresponding
weights, theNi,p are the univariate B-spline basis functions, and p, q
are the degrees in the u, v parametric directions respectively.

In our experiments, we set the degrees in the u and v direc-
tions equal to 3. We set the weights all equal to one, thus our fitted
surfaces are non-rational (i.e., spline). We also set the number of
control points equal to ten both in the u and v parametric directions.
These parameters turn out to be a reasonable choice, since they pro-
vide enough degrees of freedom to properly represent the shape of
any common object, while ensuring at the same time the model sim-
plicity needed for our method to be effective. A higher number of
control points would indeed make the fitting error always small, in-
dependently on how the segmentation algorithm was successful in
detecting the objects in the scene.

Then, we set the (uk, vl) parameter values corresponding to the
points to fit as lying on the image plane of the camera, and we conse-
quently determine the NURBS knots (needed for the definition of the
Ni,p basis functions) as in Chapter 9 of [14]. Notice that, since we
fit each segment separately instead of the whole scene, the points to
fit do not form a complete rectangular grid. Therefore, to avoid ex-
cessive surface oscillations, we first calculate a least-squares fitting
plane through the segment points, and we use it to add extra points
to be approximated by the final surface along a rectangular border
outside the segment area, as shown in Fig. 2. Finally, by consider-
ing Eq. 4 evaluated at (uk, vl) and equated to the points to fit, we
obtain an over-determined system of linear equations. We solve it
in the least-squares sense by means of singular value decomposition
(SVD), thus obtaining the surface control points.

Fig. 2. Fitted surface (orange) approximating the points belonging
to one of the segments (yellow). The extra points calculated onto the
best fitting plane are the yellow ones along the surface borders.
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Fig. 3. Tree structure for the segmentation of a sample scene. The
colored nodes correspond to the final segments. Red segments: fur-
ther segmentation was attempted but rejected since not satisfying
the MSE improvement constraint. Orange: the segmentation was re-
jected since one of the resulting sub-segments would be smaller than
Tp. Light green: not split since smaller than 2Tp. Green: stopped
since the maximum tree depth Td was reached.

5. ITERATIVE TREE STRUCTURED FITTING AND
SEGMENTATION

After presenting the two main building blocks the complete segmen-
tation procedure can now be described. The 6D representation of
Eq. 3 is firstly built and used as input. We will denote with P the
complete 6D point cloud. Then the image is segmented into two
parts P0 and P1 using the segmentation algorithm of Section 3. A
surface is then fitted on each of the two segments, obtaining the two
surfaces S0 and S1. The MSE between the depth samples in P0 and
P1 and the points obtained by sampling the two NURBS approxi-
mations S0 and S1 at the corresponding locations is computed thus
obtaining the two values e0 and e1. In order to proceed to the next
step a set of conditions must be satisfied, i.e.,:

• The size of P0 and P1 must be bigger than 2Tp. If one of
the two segments does not satisfy the constraint it is kept as
part of the final solution and it is not split any more. This is
consistent with the choice of not allowing segments smaller
than Tp made in Section 3 since the split would produce at
least one segment smaller than Tp.

• A maximum number Td of recursive splits on each segment
is set, when the segmentation tree of Fig. 3 reaches the max-
imum allowed depth the procedure is stopped on the corre-
sponding branch.

• A maximum number of splits (i.e., segments) Ts is also set.
Again when it is reached the procedure is stopped.

However at this first iteration the stop conditions are very unlikely to
be reached and the procedure continues recursively by splitting the
two point cloudsP0 andP1 into two parts obtaining the setsP00, P01

and P10, P11 respectively. Note that the point clouds are sorted on
the basis of the computed MSE and at each step the point cloud with
the maximum MSE is processed, e.g., at the first step if e1 > e0 then
P1 is processed firstly. In order to describe the general case let us
assume that the segment Pi is considered for splitting (e.g., i = 0
or i = 1 at the first iteration): the segment is split into two sub-
segments Pi0 and Pi1 as before, the two NURBS approximations
Si0 and Si1 and the MSE values ei0 and ei1 are also computed.
At this point the weighted average of the MSE given by the new

segmentation is compared with the one of Pi:

ei0|Pi0|+ ei1|Pi1|
ei(|Pi0|+ |Pi1|)

< Te (5)

where the weights are the cardinalities of the two sets and Te is a
suitable threshold (for the results we set Te = 0.8). If the constraint
of Eq. 5 is satisfied it means that the segmentation has improved
the accuracy of the scene representation by recognizing the different
surfaces (i.e., objects) in the scene. In this case it must be kept and
the two sub-segments Pi0 and Pi1 are further subdivided with the
same procedure. If the constraint is not satisfied the segmentation is
discarded, the segment Pi is kept as a single object and no further
processing is done on this branch of the tree. Before proceeding the
previously introduced conditions are also checked on each segment
before splitting, i.e.:

(|Pi| > 2Tp) ∧ (Depth(Ti) < Td) ∧ (count(i) < Ts) (6)

whereDepth(Ti) is the depth of the i− th node and count(i) is the
number of splits made until the current iteration. The same proce-
dure is applied recursively to all the sub-segments generated during
the computation until the condition of (5) is satisfied and none of the
stopping conditions is violated leading to a tree structure similar to
the one of Fig. 3.

Iteration 1 Iteration 2 Iteration 3

Iteration 10 Iteration 20 final result

Fig. 4. Execution of the proposed algorithm on the scene of Fig. 5,
first row. The images show the segmentation after 1,2,3,10 and 20
iterations and the final result.

6. EXPERIMENTAL RESULTS

In order to evaluate the performances of the proposed approach
a set of images and depth maps of some sample scenes has been
acquired with the Kinect sensor (they are available at http:
//lttm.dei.unipd.it/downloads/segmentation).
After calibrating the sensor with the method of [15], it is possi-
ble to build the representation of Section 3. The results are shown
in Fig. 5: the first two columns show the acquired images and depth
maps while the third column shows the results of the application
of the method of [11], that roughly corresponds to directly segment
the image into the desired number of clusters in a single step with
the method of Sec. 3. The fourth column shows the result of the
application of the proposed method. It is possible to see that it
allows to obtain better performances than the compared approach
on all the considered scenes, since the objects are well recognized
and there are almost no segments extending over multiple objects at
different depths. This is due to the fact that if a segment spans over
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Fig. 5. Segmentation of some sample scenes with the proposed method and with the approach of [11].

multiple objects with different 3D positions the surface fitting would
not be accurate and the proposed method will further segment the
region until it is split into the various objects. This can be noticed
also from Fig. 4 that shows the partial results of the execution of the
proposed method after 1, 2, 3, 10 and 20 iterations, it is possible to
see that the various objects in the scene get progressively separated
while more and more splits are performed. Another strength point is
that the proposed approach is able to recognize the different objects
in the scene but at the same time avoids oversegmenting them. In
particular note how some objects and people that are divided into
several parts by the approach of [11] (e.g., the people in rows 4
and 5) are instead kept together by the proposed method since the
surface estimation and evaluation scheme allows to recognize that
they are part of a single surface. The edges of the object are also
very well captured. Finally note that, even if the MSE evaluation is
done on geometry data, in the clustering step the proposed approach
makes use also of color information, as it is possible to notice from
some details, e.g., the hexagons on the soccer ball.

7. CONCLUSIONS

In this paper we proposed a novel scheme for the joint segmentation
of color and depth information. The proposed approach not only
exploits color and depth information together to improve the seg-
mentation performances but also exploits a surface fitting scheme to
determine if the segmentation has correctly divided the 3D surfaces
present in the scene. Experimental results demonstrate its effective-
ness and its ability to avoid oversegmentation by the analysis of the
3D surfaces corresponding to the objects in the scene. Further re-
search will be devoted to a more advanced evaluation of the surface
fitting based not only on the MSE but also on parameters of the fit-
ted surface, e.g., the local curvature. The replacement of the binary
splits with the possibility of creating multiple clusters in a single
step will also be considered. Finally parallel implementations will
be considered to optimize the computation time.
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