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ABSTRACT

This paper presents a novel strategy for the compression of
depth maps. The proposed scheme starts with a segmenta-
tion step which identifies and extracts edges and main ob-
jects, then it introduces an efficient compression strategy for
the segmented regions’ shape. In the subsequent step a novel
algorithm is used to predict the surface shape from the seg-
mented regions and a set of regularly spaced samples. Finally
the few prediction residuals are efficiently compressed using
standard image compression techniques. Experimental results
show that the proposed scheme not only offers a significant
gain over JPEG2000 on various types of depth maps but also
produces depth maps without edge artifacts particularly suited
to 3D warping and free viewpoint video applications.

Index Terms— Image coding, Image segmentation

1. INTRODUCTION

3DTV systems require efficient ways to compress and trans-
mit depth maps, as such data are both produced by many 3D
scanners and passive reconstruction algorithms and needed in
3D display devices and visualization algorithms. The first
straightforward approach to depth maps’ compression is to
treat them as standard images and to use standard image or
video compression tools like JPEG2000 or H.264. However
these standards aim at the minimization of image visual qual-
ity and do not exploit the peculiarities of depth maps, there-
fore being not optimal. Some authors have shown that by
reshaping the dynamic range and by properly tuning com-
pression parameters it is possible to improve the performance
of image compression tools. In particular Krishnamurty et
al.[1] have shown that the Region Of Interest (ROI) feature
of JPEG2000 driven by an edge detector can be used to avoid
artifacts on the edges. The careful handling of edges is one
of the key points in depth maps’ compression, in fact they are
usually made of smooth regions divided by sharp edges. By
exploiting this structure it is possible to achieve good com-
pression performance [2]. Another family of approaches is
based on the conversion of the depth map to a 3D mesh [3].
In free viewpoint video applications another interesting field
of research is how to exploit the redundancy between the var-
ious depth maps corresponding to different views of the same
scene for an efficient compression [4].
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Fig. 1. Architecture of the compression system
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Fig. 2. Architecture of the decompression system

2. OVERVIEW OF THE PROPOSED COMPRESSION
SCHEME

The proposed compression scheme rests on the common as-
sumption that depth maps are usually made by a set of quite
smooth surfaces separated by sharp edges between them.

The edges represent the key issue in depth map compres-
sion. Small errors in their positions or blurring of them lead to
huge artifacts in typical uses of the depth information such as
novel views’ reconstruction from different viewpoints. They
also represent one of the biggest issues when directly apply-
ing image compression tools on depth data.

The compression system we propose is based on the ar-
chitecture shown in Fig.1, where the rectangular boxes rep-
resent processing steps and the parallelograms indicate data.
In particular the data of the output compressed bitstream is
marked by an asterisk. The first task is the segmentation of
the depth map (rectangular box 1). Segmented data are then
compressed exploiting the approach presented in Section 2.1
(box 2 and 3). In the second task both the original depth map



and its segmented version are subsampled and the difference
is compressed as a JPEG2000 lossless image (box 4,5 and 6).
The next task of the algorithm is the construction of a pre-
diction of the original depth map from its subsampled version
and the segmented data exploiting 3D clues (box 7). Finally
the residuals between the prediction and the actual depth map
are computed and lossy compressed in JPEG2000 (box 8).
The decompression stage (Fig.2) follows the same steps in the
reversed order: the subsampled depth map and the segmenta-
tion data are decompressed and used to predict the depth map.
Then compression residuals are added to the prediction.

2.1. Segmentation and compression of the segmented data

In order to extract the different objects in the scenes and to
identify the edge positions, we used the pyramidal segmenta-
tion algorithm implemented in the OpenCV libraries(box 1).

If the source image has been divided into n regions Rk, k =
1, 2, ..., n by the segmentation algorithm, the segmentation
output can be represented by a set of n binary masks mk(x),
one for each segmented region. The kth mask has a bit for
each pixel indicating if the corresponding pixel belongs to that
region, i.e., mk(x) = 1 if x ∈ Rk and mk(x) = 0 otherwise.
The proposed compression scheme for the segmentation out-
put works as follows:

1. The average depth value ak for each segmented region
Rk is computed and stored. The n regions are then
sorted on the basis of the corresponding average ak and
an index is associated to each mask (denoted with i).

2. A new set of dlog ne masks Mj is built (box2). Each
of the Mj corresponds to a bitplane in the mask index
representation: If pixel x belongs to mask mi then the
masks corresponding to the bits set to one in the binary
representation of i are set to one for that pixel. In the
decompression stage the index of the pixel segment can
be computed simply as i(x) =

∑dlog ne−1
j=0 Mj(x)2j .

This approach reduces the number of masks that need
to be compressed and the size of the corresponding com-
pressed data (in spite they generally have more complex
shapes experimental result shows an average improve-
ment of about 20% in the compressed mask data).

3. Each of the Mj is lossless compressed using an arith-
metic coder (box 3). Lossless coding is needed since
the masks contain the key information about edge po-
sitions. We used the JBIG coding scheme based on
IBM’s Q-coder. This solution offers a very good com-
pression performance and also a multi-layer feature that
can be used to handle the set of masks.

The next task (box 5) concerns the subsampling of the
depth data. Firstly the depth map is subsampled on a reg-
ular grid as shown by the yellow dots in Fig 3b. Let’s de-
note with ∆x the grid squares’ size, values of 8x8 or 16x16

provided the best performance. The idea is to take regularly
spaced samples of the 3D surface represented by the depth
map, without any filtering in order to avoid edges blurring.
If W and H are the dimensions of the original depth map,
the subsampled depth values are basically a reduced resolu-
tion depth map of size (W/∆x) by (H/∆x). It can be com-
pressed using JPEG2000 exploiting the lossless compression
mode (box 6). Lossless compression is necessary to avoid
blurring on the edges and averaging between close samples
belonging to different regions which would make useless the
benefits of the segmentation step. However the low resolution
allows to obtain small file sizes even in lossless compression.
It is also possible to improve the compression performance by
subtracting the average depth value of the corresponding seg-
ment to each sample and by compressing the difference be-
tween the two values (box 4 of Fig.1 refers to this solution).
In this way sharp edges are removed from the subsampled
depth map and the size of the corresponding compressed file
is reduced.
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Fig. 3. a) Depth map; b) Segmented depth map (yellow dots
represent the position of the grid samples); c) Predicted depth
map; d) Difference between predicted and actual depth map

2.2. Prediction of the depth map

One of the key steps in both the coding and decoding proce-
dure is the estimation of the depth map (or the surface shape)
from the subsampled depth map and the full resolution seg-
mentation output (box 7).

The idea is that the depth map is made of a set of smooth
surface regions represented by the segmented data. For each
region a set of samples is available (represented by the val-
ues of the corresponding subsampled depth map pixels). The
proposed prediction scheme uses the pixels of the sparse grid
corresponding to the subsampled depth map (the yellow dots



in Fig. 3b) and the surface regions’ shape information derived
from the segmentation. Each pixel of the depth map can there-
fore be surrounded by up to 4 samples of the grid that belong
to the same region (shown in yellow in Fig. 4). The value
of each pixel can be estimated by interpolating the values of
the grid samples that belong to the same region. There are 5
possible cases (excluding the trivial case of samples that cor-
respond to grid points). Figure 4 shows an example of each of
them but other symmetrical or rotated configurations are pos-
sible. The proposed surface estimation approach is based on
the assumption that each segmented region ideally represents
a single object in the 3D scene and it can be approximated by
a set of planar patches. The algorithm works in the following
way for the 5 different configurations:
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Fig. 4. Grid samples: the 5 possible configurations

a) All the 4 samples surrounding the pixel to be predicted
(shown in red in Fig. 4) are inside the same region. In
this case the pixel value is obtained from the value of
the 4 closest grid samples by bilinear interpolation1.

b) The pixel to be predicted is surrounded by 3 samples
belonging to the same region but the fourth is out of the
region. In this case we firstly estimate the value that the
fourth grid sample would have if it was in the region by
assuming that it is on the plane defined by the other
three points. Referring to the pixel position numbering
of Fig. 4b, this corresponds to estimate the value of P1

as P1 = P2 + P3 − P4 . Then we compute the pixel
value using bilinear interpolation (with the 3 samples
in the region and the prediction of the fourth) as in the
previous case.

c) The pixel to be predicted has 2 neighbors in the region
and two outside (this typically it happens when it is
close to an edge). The two missing points are predicted
by assuming that each of them lies on the line passing
through the closest available point and the symmetrical
point with respect to the available one (shown in orange
in Fig 4c). With the notation of Fig. 4c, for example,
we obtain P1 = 2P2 − P3 . If the symmetrical point
is also outside the region the closest point value is cho-
sen as prediction. As in the previous case once the two

1This approach is consistent with the assumption that most surface
patches are planar. Experimental proofs with splines and other cubic inter-
polation schemes has shown that in most practical cases these techniques do
not provide any improvement on the surface reconstruction accuracy.

missing grid samples are obtained the pixel to be pre-
dicted is computed by bilinear interpolation.

d) The pixel to be predicted has just one neighbor grid
sample in the same region: the value of this sample is
taken as its estimate.

e) The pixel to be predicted is inside a very small region
and none of the 4 closest grid samples are inside it
(quite uncommon but possible). The average depth value
of the region ak is taken as the pixel prediction value.

A very important aspect of the proposed procedure is that
the prediction is always built from grid samples in the same
region of the pixel to be evaluated, while grid samples out-
side the region are never used. This ensures that steep edges
do not get blurred unless they are not detected from the seg-
mentation(see Fig. 3c).

2.3. Residual compression

Finally the difference between estimated and actual depth map
is computed and lossy compressed by JPEG2000 (box 8).
As it is possible to see from Fig.3d the depth prediction is
quite similar to the actual depth and the residual image has
very small values only. In particular it does not contain large
transitions and usually the biggest information content of the
residual difference is related to areas where the segmenta-
tion has not been able to divide the image properly. In order
to achieve nearly-lossless compression the residuals typically
correspond to the largest block of data in the compressed file.
However residual is compressed in JPEG2000 and it is pos-
sible to exploit all the scalability features of this standard to
compress and transmit them in a progressive manner.

The decompression step basically follows the compres-
sion procedure in the reversed order. Firstly the JPEG2000
image with the grid samples and the JBIG file with the masks
are decompressed. Then the masks are recombined using the
technique described in Section 2.1 and the prediction of the
depth map is built from the segmentation regions and the grid
samples. Finally compression residuals are decompressed and
added to the estimated depth map.

3. EXPERIMENTAL RESULTS

The first example shows the performance of the proposed
scheme on Microsoft’s breakdance sequence. In this exam-
ple for the first frame (that has a resolution of 1024x768) the
segmentation data requires 5834 bytes (the proposed scheme
does not require the creation of too many segmented regions,
it is necessary just to extract the main scene elements). The
mean values of the 7 segmented regions require just one byte
for each of them, the grid samples 1758 bytes (∆x = 16) or
4629 bytes (∆x = 8) and the remaining part of the bitrate
is allocated to the residuals (from 1 to 50 KBytes). Plot 5
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Fig. 5. Experimental results: breakdance depth map (first
frame and complete sequence at 0.2bpp)
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Fig. 6. Experimental results: ABW depth map

compares the proposed approach2 (denoted with ”DMC”) and
JPEG2000. The left plot shows how our approach achieves
a PSNR gain of around 3 dB for bitrates bigger than 0.15
bpp (JPEG2000 compression is performed with the Kakadu
coder). At very low bitrates segmentation data become pre-
dominant and the performance is lower. It also shows that
for this image the 8x8 grid is the optimal choice (unless very
low bitrates are needed). As expected, finer grids require
more data for the samples but residuals are smaller at com-
parable PSNR. In general larger grids work well for simple
depth maps with large smooth surfaces, while more detailed
depth maps require finer grids. The right plot of Fig. 5 shows
the performance on all the 100 frames of the breakdance se-
quence at 0.2 bpp. The PSNR average of the proposed ap-
proach on the complete sequence is around 52.2 dB, about 4
dB better than JPEG2000 and comparable to the performance
of H.264 (51.6 dB at 0.19 bpp). It is worth noting that H.264
uses also motion prediction. Therefore the performance of
the proposed scheme combined with a motion prediction al-
gorithm is likely to outperform H.264 (we are currently im-
plementing a system of this kind).

Fig.6 shows an example from the ABW [5] range image
dataset representing a typical example of the output of 3D
scanning systems. In this case (Fig. 6) the proposed approach
has an average gain of 5dB over JPEG2000 , showing its ef-
fectiveness in compressing the data produced by actual range
scanners. The impressive results on this image are due both to
the presence of many planar surfaces, well handled by the sur-
face prediction scheme of Section 2.2 and by the effectiveness
of the segmentation step in handling the many isolated bright
points (that are critical for standard image compression tools

2A visual comparison of the compressed images is available at
http://lttm.dei.unipd.it/nuovo/research/depth-compression.html

working in the frequency domain).
The preliminary experimental results performed by includ-

ing the proposed approach into the framework of [6] have
shown that it produces depth maps particularly suited to 3D
warping applications. This is mainly due to the precise rep-
resentation of edges which prevents the artifacts typical of
other compression schemes in 3D warping procedures. The
proposed algorithm also does not require complex computa-
tions (the largest part of the computation time is allocated to
the segmentation and JPEG2000 residual compression).

4. CONCLUSIONS

This paper introduces a novel depth maps compression scheme
which allows to compress in a very efficient way depth data
preserving the sharp transitions on the objects’ edges and at
the same time to achieve high compression rates on smooth
regular surfaces. Experiments show a gain over standard
JPEG2000 compression of about 3-5 dB for medium-high
bitrates. Segmentation data limit performance at very low
bitrates but further work will be devoted at improving low-
bitrate coding. We are currently working on a motion predic-
tion stage in order to fully exploit the proposed method in free
viewpoint video and 3DTV coding applications. Finally the
proposed compression strategy will also be included into the
remote visualization framework of [6] in order to improve the
geometry compression module.
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