
A RATE-DISTORTION FRAMEWORK FOR
TRANSMISSION AND REMOTE VISUALIZATION

OF 3D MODELS
Pietro Zanuttigh

UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI ELETTRONICA ED INFORMATICA

TESI DI DOTTORATO IN INGEGNERIA INFORMATICA ED ELETTRONICA

INDUSTRIALI

A RATE-DISTORTION

FRAMEWORK FOR

TRANSMISSION AND REMOTE

VISUALIZATION OF 3D MODELS

Pietro Zanuttigh

Contents

1 Introduction 5

2 Existing remote visualization techniques 11
2.1 Transmission of a triangular mesh with the corresponding texture . . . 11

2.2 Image-Based Rendering techniques 12

2.2.1 The plenoptic function . 12

2.2.2 Rendering without geometry 14

2.2.3 Rendering with implicit geometry 17

2.2.4 Rendering with explicit geometry 17

2.3 Remote visualization by image transmission 18

2.3.1 Basic structure . 19

2.3.2 Prediction of the views . 21

2.3.3 Residual selection strategies 22

2.3.4 Compression of the transmitted data 25

2.4 Compression and transmission of 2D images with JPEG2000 and JPIP 27

2.4.1 Compression standard brief overview 27

2.4.2 Scalability features in JPEG2000 29

2.4.3 The JPIP transmission protocol 30

2.4.4 Client-Server Interaction in JPIP 31

3 A new approach to remote 3D visualization 33
3.1 Proposed scheme . 36

3.2 Scene representation . 38

3.3 Server overview . 45

3.4 Client overview . 47

4 Distortion-sensitive view synthesis 49
4.1 Warping of a single view . 50

4.2 Warping from multiple views . 54

4.3 Distortion-based selection of the stitching sources 60

4.4 Accounting for image compression distortion 60

4.4.1 Propagation of the distortion through DWT synthesis, warping

and DWT analysis . 61

4.4.2 Effects of extra-band energy 66

4.4.3 Distortion estimation with depth maps 69

4.5 Holes related issues . 72

4.6 Accounting for Depth Uncertainty 78

4.7 Lighting related issues . 83

4.8 Regularization of the selection choices 85

4.9 Performance issues . 86

5 Distortion-sensitive geometry synthesis 89
5.1 Proposed approach . 89

5.2 Holes related issues in depth estimation 94

6 Server policies 97
6.1 The server optimization problem . 98

6.2 Optimization of Reinforcing Enhancements 103

6.3 Optimization of Disruptive Enhancements 106

6.4 Complete Server Solution . 112

6.5 Geometry transmission policy . 113

7 Experimental results and performance analysis 115
7.1 View fusion experiments . 118

7.2 Geometry synthesis experiments . 125

7.3 Server policy experiments . 129

7.4 Performance analysis . 134

7.4.1 Client performance analysis 135

7.4.2 Server performance analysis 139

8 Conclusions 141

Bibliography 142

Abstract

This thesis presents a new approach to the remote visualization of 3D scenes based on a

rate-distortion framework. The proposed interactive browsing environment is based on

a client server couple where the server holds the scene description in the form of a set of

views and depth maps. Both geometry and texture information is scalably compressed

using JPEG2000 and can be progressively transmitted to the client as the interactive

browsing goes on. The proposed system extends the JPIP standard, originally proposed

for the interactive browsing of JPEG2000 compressed images, to achieve an efficient

transmission of 3D scene information.

The user at client side can freely explore the scene from any viewpoint and direc-

tion. As soon as he requires a view of interest, the client application sends the viewing

parameters to the server that decides how to optimally allocate transmission resources

between the various elements of the scalably compressed image and depth maps bit-

streams on the basis of the required view and of the data already transmitted to the

client. The JPIP communication paradigm fits inside this framework rather well be-

cause it allows the server to form its own decisions regarding the best way to improve

the synthesized views at the client, either by augmenting the quality of the images (or

depth maps) already available at client side, or by sending information corresponding

to new images or depth maps. Finally the client application combines the received

information into the required rendering using 3D warping and multi-resolution image

fusion techniques based on the wavelet transform. It can perform the rendering at any

time exploiting the already transmitted data without waiting for the server communi-

cations.

A novel rate-distortion framework allows to estimate the distortion in the final ren-

dered view. This model takes into account different sources of distortion, including the

compression distortion in the received views, translational errors due to the geometry

uncertainty and colours changes due to lighting and reflections. This framework will

be exploited both to select the best source view for the samples in the rendered images

at client side and to decide which elements of the compressed scene description need to

be transmitted at server side. A two step real time optimization algorithm exploits this

distortion framework to allocate the available bandwidth between the different images:

the first step takes into account the effects of improving the images currently used to

synthesize the required rendering, while the second considers the switch to new, better

aligned, views. The two solutions are finally combined together to find the optimal

solution to the selection of the information that needs to be transmitted. A prototype

application has been built and used to experimentally validate the proposed approach.

2

Sommario

In questa tesi viene descritto un approccio innovativo per la visualizzazione remota

di ambienti tridimensionali basato su un modello di tipo rate-distortion. L’approccio

proposto è basato su un sistema di tipo client-server dove la descrizione della scena

è memorizzata sul server sotto forma di un insieme di viste e mappe di profondità.

Sia l’informazione sulla geometria che le viste sono compresse in modo scalabile con

JPEG2000 e possono essere trasmesse al client in modo progressivo durante la navi-

gazione della scena. Il sistema proposto estende le funzionalità dello standard JPIP,

originariamente pensato per la trasmissione di immagini compresse in JPEG2000, in

modo da poterlo utilizzare per trasmettere in modo efficiente ambienti tridimensionali.

L’utente può esplorare liberamente la scena da ogni direzione e punto di vista.

Non appena richiede una vista di interesse, l’applicazione client invia i parametri della

vista al server che decide come distribuire in modo ottimale la banda disponibile tra i

diversi elementi dei bit-stream compressi relativi alle diverse immagini e mappe di pro-

fondità sulla base della vista richiesta e dell’informazione precedentemente trasmessa

al client. Il modello di comunicazione usato da JPIP si integra molto bene in questo

sistema perché permette al server di decidere in modo autonomo come migliorare la

qualità del rendering al client, migliorando la rappresentazione di immagini (o mappe

di profondità) già disponibili o invece trasmettendo dati relativi a nuove immagini o

mappe di profondità. Infine l’applicazione client sfrutta l’informazione ricevuta dal

server per generare la vista richiesta riproiettando le viste disponibili e fondendole in-

sieme utilizzando tecniche multirisoluzione basate sulla trasformata Wavelet. Il client

può effettuare il rendering in qualsiasi momento sfruttando l’informazione ricevuta in

precedenza senza attendere l’arrivo di nuovi dati dal server.

È stato sviluppato un modello di tipo rate-distortion per stimare la distorsione nelle

viste generate dal client. Questo modello considera diverse fonti di errore, come la dis-

torsione introdotta dalla compressione con perdite nelle viste ricevute, gli errori sulla

posizione dovuti ad imprecisoni nella geometria e l’effetto dell’illuminazione e delle

riflessioni. Questa stima viene utilizzata sia dal client per selezionare la miglior vista

da cui prendere ogni punto del rendering, sia dal server per decidere quali elementi

della rappresentazione compressa della scena devono essere trasmessi. Un algoritmo

di ottimizzazione in tempo reale diviso in due fasi sfrutta il modello della distorsione

per allocare la banda disponibile tra le varie immagini. La prima fase considera il

guadagno che si può ottenere migliorando le immagini attualmente utilizzate per ri-

costruire il rendering, mentre la seconda considera il passaggio a nuove immagini più

vicine alla vista richiesta. Infine le due soluzioni sono combinate insieme per de-

4

cidere quali elementi della descrizione della scena devono essere trasmessi. La validità

dell’approccio proposto è confermata dai risultati sperimentali ottenuti con un primo

prototipo dell’applicazione.

Chapter 1

Introduction

Three dimensional representations have gained an increasing interest in the last years,

but while a lot of research activity has been carried on how to build and render them,

the remote visualization of this kind of data is still an open issue. These representation

are usually associated to huge amounts of data and how to extract from these datasets

the information needed to follow the interactive inspection of the scene is a problem

posing many challenging conceptual and practical questions. The work presented in

this thesis is concerned with the problem of efficient interactive retrieval and rendering

of 3D scenes.

A first basic requirement to build an efficient browsing system is a good under-

standing of how transmission resources should be distributed between the different

elements of the scene representation. This includes the optimal subdivision between

texture and geometry, studied for example in [1], but also the definition of which el-

ements of the scene description are more useful in the rendering of a particular view.

Even if some answers have previously been provided for the case in which the entire

3D model, including all texture and geometry components, is to be transmitted over

a bandwidth constrained channel (for example [2], [3]), in an interactive framework

these issues must be solved taking into account also other aspects like the information

transmitted to the client during the previous browsing.

The basic scheme of a remote 3D visualization system is made of a client-server

couple, connected via a bandlimited channel: at client side, the user can freely inspect

the 3D scene and interactively determines the particular view of interest. The server

should provide the data needed to follow the user’s browsing of the scene. Finally the

client should exploit this information to show the required views. A key difference

between this framework and other interactive applications such as video streaming is

that the user is expected to navigate between a variety of different views, but we do not

know in advance of time which views will be selected and how much time (transmis-

sion resources) the user will choose to devote to any particular view. Another critical

issue is the presence of two completely different kind of data in the scene description,

the geometry information and the texture. Some preliminary studies have been carried

out in this field (see [4]) but how transmission resources should be distributed between

texture and geometry information remains a difficult problem.

There exist several different remote visualization schemes, but none of them is

6 Chapter 1. Introduction

completely satisfactory. The most common approach is based on the standard rep-

resentation of 3D scenes as a triangular mesh together with the texture information.

This representation is very compact and has no redundant information, but at the same

time it does not allow an easy random access to the scene description. The simplest

solution consists in just transmitting from the server to the client a complete 3D model

together with its texture and then performing the rendering at client side. Though very

common, this approach suffers from poor response time, since visualization cannot

commence until everything has been sent, and can require a very powerful client to

render in an efficient way large datasets. The effectiveness of this scheme can be im-

proved by compressing the 3D mesh descriptions and the textures, possibly exploiting

scalable compression techniques. There are many methods to compress the geometry

information, for example the approaches described in [5, 6, 7], but all these solutions

aim more at obtaining an efficient compression of the complete scene description than

at an interactive visualization system.

Another group of approaches is instead based on Image Based Rendering tech-

niques. The basic idea behind these systems is to represent the 3D scene with a suitable

collection of images. The representation of the scene as a set of images (sometimes

associated with depth information) offers a straightforward way to access to subsets

of the data. Unfortunately it also introduce a redundancy in the scene representation.

To exploit efficiently this scheme it is also necessary to find an efficient way to com-

bine the information from the finite set of available images into the rendering of a

new arbitrary view. There exist many different IBR techniques, Section 2.2 contains a

brief overview of them, but usually they introduce some constraints on the freedom of

exploration or require the availability of a huge dataset of images.

Another possibile solution (described in detail in Section 2.3) is to move the render-

ing engine at server side and transmit just the rendered images. However this approach

introduces other drawbacks such as a huge workload at server side, high bandwidth re-

quirements and a strict coupling between the server and the client that makes it highly

sensitive to network congestion and delays. Predictive compression techniques can

help in dealing with these issues, but the performances of systems based on this ap-

proach are still not completely satisfactory.

In the last years new highly scalable compression and transmission tools, such as

JPEG2000 [8] together with its interactive protocol JPIP [9], have offered an efficient

solution to the remote browsing problem for the simpler problem of bidimensional

images. They allow to effectively browse huge images by downloading only the data

really necessary for the required section or resolution of the image, and to avoid the

transmission of redundant information by exploiting previously transmitted data to

satisfy new requests.

In this thesis a new framework for interactive browsing will be proposed. It will

extend some of the features and ideas behind these approaches from 2D images to a

three dimensional framework. In the proposed scheme the server delivers incremental

contributions from two types of pre-existing data: scalably compressed views of the

scene and a scalably compressed representation of the scene surface geometry. Initially

a representation of the geometry based on a triangular mesh will be considered but

then it will be replaced by a set of incremental contributions from a group of scalably

7

compressed depth maps.

All the compressed information available at server side is is divided in many con-

tributions corresponding to different spatial regions at different quality and resolution

levels exploiting the JPEG2000 scalability features. All these elements are transmitted

in a progressive way while the interactive browsing goes on. It is important to underline

that the server does not generate new views or compress differential imagery. Instead,

it just determines and sends the elements from the compressed data that allow to obtain

the best possible rendering of the required view at client side. The client application

decompresses and stores the data transmitted by the server and then exploits the geom-

etry information to combine the received information about the different views into the

renderings required by the user. In the proposed scheme the synthesis of the required

rendering can be performed by the client at any time exploiting the previously received

information. This helps to decouple the client and server components of the system,

thus making the system robust to network congestion and latencies.

An efficient implementation of the proposed approach should give an answer to

two fundamental questions:

1. How should the client combine information from available original view images

into a new view of interest, using the available description of the surface geom-

etry?

2. How should the server distribute available transmission resources between the

compressed elements of the various available views and the geometry informa-

tion in order to obtain the best image quality at client side? Included in this

question is that of whether the server should transmit elements from a new orig-

inal view which is more closely aligned with the requested view, rather than

refining nearby original views for which the client already has more data.

The geometry information allows to warp the available images to the viewpoint

of interest, but a good answer to the first question requires also to find a way to se-

lect which images (or part of them) are going to be used to reconstruct the required

rendering. The solution of the second question is different from the case of a straight-

forward compression of the whole scene description, and must be solved taking into

account the previously transmitted data. For example if the client happens to request

one of the original view images, it can be incrementally served directly from its scal-

ably compressed representation. Interestingly, though, this might not always be the

best policy. If the client has already received a good quality representation of one or

more nearby original views it may be more efficient to send only the geometric in-

formation required for the client to synthesize the requested view from the available

one and then send additional compressed information to further augment the quality of

these nearby original view images. It follows that even if the server has a huge number

of original view images, an efficient service policy would effectively subsample them

based on the interactive user’s navigation patterns. Exploiting the scalable compres-

sion features the server may even choose to send some elements from the requested

view while expecting the client to derive other aspects of the view from the previously

delivered view images.

8 Chapter 1. Introduction

In particular, we have developed a paradigm to estimate the distortion in the ren-

dered views [10], [11]. The proposed scheme permits to map the various sources of

distortion in the different available views and in the geometry description to the final

rendered view. The distortion estimates offer a straightforward solution to the client

issue, where the requested rendering can be reconstructed by selecting the contribu-

tion from the available data that minimize the final distortion. The same model can

be also exploited in the answer to the server question, again by transmitting the ele-

ments from the available compressed data that minimize the distortion in the rendered

views. It is worth mentioning that some answers to the second question posed above

have previously been provided for the case in which the entire 3D model, including all

texture and geometry components, are to be transmitted over a bandwidth constrained

channel. In particular, Tian and AlRegib [2] extend an approach proposed by Balmelli

[3], in which the bandwidth is divided between texture and geometry components of a

global model on the basis of the optimization of a visualization objective. The key dif-

ference between this and similar approaches and the proposed framework is that, while

in these formulations, the global visualization objective either explicitly or implicitly

considers a wide range of viewing directions simultaneously, in the proposed approach

we are concerned with the optimization of an interactive client’s view of interest. In-

deed the global perspective becomes increasingly unhelpful as the scene which must

be navigated grows. Eventually it becomes unreasonable to expect that any individual

client will ever visit more than a fraction of the scene. Moreover, interactive naviga-

tion means that the client may move very close to the surface at some instants and

much further away at others; these clearly alter the optimal balance between texture

and geometry information.

The works from Ramanathan and Girod [12],[12] on optimized server distribution

policies for predictively compressed light fields are perhaps the most closely related to

this work, even if Ramathan’s approach does not rely on the availability of geometry

information. Another key difference between that work and the one presented in this

thesis is the distortion-sensitive rendering approach used at client side in our work.

Chapter 2 contains a brief review of the most common remote visualization tech-

niques for three dimensional scenes and standard images. After the description of the

most common image-based rendering techniques, a particular focus is given to the re-

mote visualization by image transmission schemes, that represent the starting point

for the development of the proposed approach. Finally the chapter contains a brief

overview of the basic concepts behind JPEG2000 and its interactive protocol JPIP be-

cause they will be extensively used to achieve a compact and scalable representation of

texture and geometry information in the proposed system. Chapter 3 presents a general

overview of the architecture of the proposed remote visualization system and the basic

building blocks of the client and server applications. Chapter 4 introduces the distor-

tion estimation framework and explains how it can be used together with 3D warping

and multiresolution stitching techniques to combine the different available views into

the required renderings at client side. In Chapter 5 the framework introduced in the

previous chapter is applied also to geometry information, thus allowing to reconstruct

a single representation of the 3D scene from a set of depth maps. Chapter 6 focuses on

the server issue and describes a policy to decide how to allocate the available transmis-

9

sion resources between the different elements of the available views. Finally Chapter 7

presents the experimental results obtained with the prototype of the system and a brief

analysis of the computation requirements of the proposed scheme.

10 Chapter 1. Introduction

Chapter 2

Existing remote visualization
techniques

In this chapter contains a brief discussion of the most common remote visualization

schemes for three dimensional scenes. After a brief overview of the classic approach

and of the most common image-based rendering techniques, a particular focus is given

to remote visualization by image transmission and to the remote visualization of stan-

dard images using JPEG2000 and the JPIP protocol.

The image transmission approach is described in detail because it were the sub-

ject of previous research activity and the remote visualization scheme proposed in this

thesis represents both an evolution and an answer to the limits of this approach. The

JPEG2000 image compression standard and its interactive protocol JPIP allow an ef-

ficient remote visualization of 2D images. They have been included in this chapter

because the approach to remote visualization presented in this work relies on the fea-

tures of these standards to achieve an efficient progressive transmission of the scene

information.

2.1 Transmission of a triangular mesh with the corre-
sponding texture

The simplest and most common approach to remote visualization is based on the stan-

dard representation of the scene as a triangular mesh with the corresponding texture.

This representation is compact and has no redundant information, but also does not

allow an easy random access to subsets of the data. The most common remote visu-

alization tools (for example VRML viewers like CosmoPlayer or the Cortona VRML
client) just download the complete scene description in a suitable format (it can be a

standard file type like VRML or X3D, or any proprietary format) and then perform the

rendering at client side.

This approach has some drawbacks: the bandwidth required by complex scenes’

description can be huge and it is difficult to guarantee a pre-assigned quality of service

(e.g., starting latency less than a given time, etc.) because the amount of data to be

transmitted depends on the size and characteristics of each scene; it sends the whole

12 Chapter 2. Existing remote visualization techniques

model irrespectively of fact the user may only want to see a small portion of it; it uses

inefficiently the communication channel, because the connection is never used after a

burst of data sent at the beginning; complex scenes can require a powerful client to

be smoothly browsed with the limited client resources; finally it is difficult to protect

the copyright on the 3D data (when the user downloads the complete model the author

loses the control over its diffusion).

The effectiveness of this scheme can be improved by compressing the 3D mesh

descriptions and the textures. There are many compression tools for triangular meshes.

Some of them allow also a progressive refinement of the scene description [13, 5, 7],

but they aim more at an optimal compression of the complete scene description then at

an interactive browsing framework. Texture information is usually represented by one

or more standard images and can be compressed using any suitable image compression

standard.

2.2 Image-Based Rendering techniques
The construction of a complete three dimensional representation of a real world scene

is usually a long and complex task which requires ad-hoc instrumentation and a lot of

manual labour. To avoid this task many researchers have tried to develop techniques to

represent the 3D world as it appears to our eyes without reconstructing the complete

scene geometry. Image-based rendering (usually abbreviated to IBR) techniques are

based on the idea of rendering novel views from a set of available images of the scene

without relying on a 3D geometry description. This allows to avoid the construction of

a 3D model of the scene and to obtain a more photorealistic rendering. However the

set of available views is limited for practical reasons and the critical problem in these

approaches is how to reconstruct arbitrary views from the available images. Before

describing the most common IBR techniques it is useful to introduce the concept of

plenoptic function, that represents the general framework for all IBR approaches.

2.2.1 The plenoptic function
The starting point to deal with the problem of reconstructing arbitrary views of an

environment is to understand the relationship between the light that fills the space

around us and what can be seen by our eyes. Adelson and Bergen developed a complete

representation of what our eyes are able to see from the world around them through

the concept of plenoptic function [14]. They started from the idea that the eye could

be approximated with a pinhole camera which selects all the rays of light passing

through a certain point in the space. In other words the eye ”reveals the structure of

the pencil of light at the pupil’s location”. If we switch back to the pinhole camera

and we consider a single black and white picture shot from it, it records the intensity

of the light as it appears from a single viewpoint at a certain time, averaged over all

the wavelengths of the visible spectrum. The recorded intensity can be represented as

a two dimensional function of the viewing direction in polar coordinates P (θ, φ). A

colour picture adds the information on how the intensity depends on the wavelength,

2.2 Image-Based Rendering techniques 13

and a movie adds the time dimension, thus leading to a 4D function representing all

the information available to the eye in a certain point in space P (θ, φ, λ, t). Finally

if we consider this function in every possible point of the three dimensional space we

obtain the complete form of the plenoptic function:

P = P (θ, φ, λ, t, Vx, Vy, Vz) (2.1)

The information contained in this function is a complete representation of the visual

world and permits to reconstruct every possible view at every position and instant of

time. It is important to underline that the plenoptic function does not depend on the

orientation of the eye, because it represents the complete 360◦ sphere of rays of light

around the point (also the rays from behind) and by changing the gaze direction only

their relative position is changed. The plenoptic function can be considered as the only

link between physical objects and the human eye. In other words the objects fill the

space with ray of lights which are represented by the plenoptic function and the eye

takes samples of it.

Of course the information associated to this 7D function is huge and practical ways

of representing it should be able to reduce the dimensionality and subsample in an

efficient way the plenoptic function. An obvious simplification is to drop the time

dimension by restricting to the case of static scenes. By switching from a multispec-

tral representation to the simpler case of colour RGB images we can exclude another

dimension, but we are still dealing with a 5D function.

Many different ways of representing and sampling the plenoptic function have been

developed [15]. In fact the set of available images in image-based rendering techniques

can be considered a sampling of the plenoptic function and the target of all IBR so-

lutions is to reconstruct the plenoptic function from the available samples. This is a

very difficult task and some techniques rely also on the aid of some form of geometry

information, while others are able to reconstruct the plenoptic function only partially

(this usually turns into some constraints in the browsing freedom). Every technique

is characterized by a different trade-off between the amount of data associated to the

representation and the accuracy of the possible reconstruction of the plenoptic function

(see Table 2.1). Most techniques permits to reduce the number of dimensions associ-

ated to the representation, usually at the cost of introducing constraints on the freedom

of exploration of the scene.

A common way to group the different techniques is on the basis of the amount of

geometric information used for them. A possible solution [15] is to divide them into

three main categories: the techniques that use no geometry at all; the ones that exploit

some implicit form of geometry (the most common is a set of correspondences between

samples in different views); and finally the ones which explicitly use some geometry,

for example depth information associated to the samples in the images. The standard

3D representation based on texture and geometry can be considered part of this last

group and in fact it is difficult to set a dividing line between IBR and the “classic” 3D

rendering. However this grouping is not a strict subdivision and some techniques are

difficult to characterize in this way. In the following sections there is a brief overview

of the most important techniques.

14 Chapter 2. Existing remote visualization techniques

Representation Year # of Data Geometry Constraints

type dims size representation

Plenoptic function 1991 7 Huge None None

Light field 1996 4 Huge None Outside bounding box

Lumigraph 1996 4 Huge None Outside bounding box

Concentric mosaics 1999 3 Medium None Bounding plane

Panoramic images - 2 Small None Fixed viewpoint

View interpolation 1993 2 Small Correspond. Close to avail. views

View morphing 1996 2 Small Correspond. Close to avail. views

3D warping - 2 Small Depth values **

Layered Depth Images 1998 2 Small Depth values **

View Dep. Texture Mapping 1996 2* Medium 3D model None

Standard 3D rendering - 2* Medium 3D model None

*2D texture + geometry information **samples visible in available views

Table 2.1: Characteristics of the most common IBR techniques

2.2.2 Rendering without geometry
The techniques in this group allow to represent a three dimensional scene with only

a set of images without any information on the geometric structure. This approaches

permit to completely avoid the complex task of reconstructing the geometry, but usu-

ally the lack of information on the scene structure is compensated by using a huge set

of images or by strict constraints on the freedom of exploration.

�

�

�

�
���������	

Figure 2.1: Parametrization of light fields

Light fields

An important observation about the rays of light in the plenoptic function is that the

radiance does not change along a ray unless blocked. This permits to reduce the 5D

plenoptic function (without time and spectral dependency) to a 4D function in regions

free of occluders. If we consider that most geometric models are bounded the reduction

2.2 Image-Based Rendering techniques 15

can be performed with the only constraint of placing the camera outside the convex

hull (or simply the bounding box) of the object. Levoy and Hanrahan [16] represent

this function by parametrizing the light rays with their intersection with two arbitrary

planes (see Figure 2.1). By calling (u, v) the coordinate system in the first plane and

(s, t) in the second, we obtain the 4D light field function:

L = L(s, t, u, v) (2.2)

The function can be considered as a set of pictures of the (s, t) plane taken from

every point on the (u, v) plane. For a complete representation of the plenoptic function

inside the bounding box six of these couples of planes are needed. The light field can

be built by rendering synthetic images from a 3D representation or from a collection of

picture taken from a camera array. To achieve a good representation of the light field

thousands of pictures are needed and how to acquire and compress the data is a difficult

open issue. There exists many works on compression of the light fields (mainly based

on vector quantization) and on how to randomly access them in an interactive browsing

environment [12]. Another similar method, called lumigraph, and also based on the

parametrization of the light rays over the surface of a cube has been introduced by

Gortler et Al. [17].

Concentric mosaics

This representation, introduced by Shum and He [18] in 1999, is built by using a

slit camera which moves on concentric circles and acquires a slit for every point on

these circles. In this way we obtain a three dimensional representation (the dimensions

are the radius, the rotation angle and the vertical elevation), in the form of a set of

images, one for each value of the radius. Compared with light fields this is a more

compact representation, and the acquisition phase is also simpler. At rendering time it

is possible to reconstruct novel views by interpolating the different images obtained in

this way. This representation allows the user to move continuously in a circular region

with a correct representation of lighting and parallax effects. However in the rendered

views there is always a vertical distortion, that is quite evident when the user moves

forward and backward. It can be only partially alleviated by depth correction, as shown

in [18].

Panoramic images

Panoramic images [19] offer a compact representation of what it is possible to see look-

ing in every direction from a fixed viewpoint. It is a very common representation that

has also been used in many commercial applications, like Apple’s QuickTimeVR. This

2D representation of the plenoptic function is based on the idea that, unless the view-

point changes, it is not possible to see the difference between a still scene surround-

ing the viewer and the interior of a closed shape textured with the same scene. The

shapes used more frequently for panoramic image projections are cylinders, spheres

and cubes.

16 Chapter 2. Existing remote visualization techniques

Figure 2.2: Cylindrical panoramic image

Cylindrical panoramas are the most common solution. In these images the scene

is projected on the interior of a cylinder with axis through the centre of projection and

parallel to the imaging plane. The construction of this kind of panorama starts with

the acquisition of a suitable set of photos (usually around 20) from a fixed nodal point.

The images are then projected on the cylinder surface and merged together using ad-

hoc software based on correlation methods. The resulting single image (for example

the one in Fig. 2.2) covers all the 360◦ field of the view in the horizontal direction,

but does not allow a complete freedom of observation in the vertical one (it is not

possible to look directly up or down). When looking at panoramic images on a planar

surface horizontal lines exhibit a characteristic distortion, and a warping procedure is

necessary to reconstruct from them the required views. Cylindrical panorama viewers

perform the rendering of panoramas simply by reprojecting pixel by pixel the section of

panorama currently observed on a planar surface and perform some filtering operations

to improve image quality.

Other projection types are also possible: the spherical projection allows a complete

360◦ field of view on the horizontal and vertical axis and a uniform sampling in ev-

ery direction. It also requires more complex warping computations for the rendering

and ad-hoc acquisition equipment and procedure. Cubic panoramas, present also in

the last version of the QuickTime VR product, permit a complete look-around and are

much faster to render than spherical panoramas due to the planar cube surfaces. In

this approach the sampling is not uniform as in spherical panoramas, but the 6 faces of

the cube represent a straightforward solution for the storage of the image. There are

also other solutions, for example the panoramic visualization system we developed for

the E.U. VITRA project (described in [20]) uses a prism projection to exploit hard-

ware accelerated three dimensional rendering techniques in panoramic visualization.

This solution is a trade-off between cylindrical and cubic panoramas that allows simple

acquisition through the various cylindrical panorama authoring tools and fast visual-

ization. In this approach and also in some visualization tools for cubic panoramas

the shape where the panorama is projected on is considered as a 3D object with the

panorama as its texture. This allows to perform the warping of the panoramic image as

a standard 3D rendering, thus exploiting hardware acceleration of current 3D graphic

cards.

2.2 Image-Based Rendering techniques 17

2.2.3 Rendering with implicit geometry

In this set of approaches there is no explicit representation of the geometry. Instead

they rely on a set of correspondences between samples in different views that allows

to derive some information on the scene geometry.

View interpolation

This approach, introduced by Chen and Williams [21] allows to reconstruct arbitrary

frames between a set of available views. It exploits morphing techniques to approx-

imate the intermediate frames. However this techniques requires a set of correspon-

dences between the two images to compute the morphing and works well only if the

required image and the available ones are close. The correspondences can be usually

computed using computer vision techniques such as stereo or feature correspondence,

or from the depth values if they are available.

View morphing

Seitz and Dyer has developed a technique [22] based on image morphing that allows to

reconstruct arbitrary views on the line joining the optical centres of two images. Their

approach requires to know the projection matrices associated to the views and a set of

correspondences between samples in the two images. In the first step the two images

are pre-warped using the information on the projection matrices to form two parallel

views. Then the morphed image is built by interpolating positions and colours of

corresponding points. Finally the morphed image is warped to the required viewpoint.

2.2.4 Rendering with explicit geometry

In this family of methods (that includes also the traditional 3D rendering) the rep-

resentation has also information about the geometry structure, in the form of depth

associated to the samples in the views or of a standard 3D mesh representing the object

surface.

3D warping

The information about the depth of the samples allows to reproject the points in an

available view of the scene to nearby views. 3D warping techniques exploit this prop-

erty to reconstruct the renderings from different viewpoints from a set of available

images. In Section 2.3 the 3D warping process will be described in more detail with a

particular focus on how it can be exploited in a remote visualization system. Another

IBR technique based on 3D warping is represented by the multiple-center-of-projection

(MCOP) images [23]. A MCOP image consists of a two dimensional image acquired

with a slit camera moving along an arbitrary path. By combining a MCOP image with

the camera trajectory information and the depth values for the samples it is possible to

render novel views by warping the available data.

18 Chapter 2. Existing remote visualization techniques

Layered depth images

A layered depth image is a view of the scene with multiple samples along each line of

sight. For every pixel of the image multiple depth and colour values can be stored and

this information can be exploited to warp the image to new, arbitrary, viewpoints. The

work from Shade et al. [24] exploits also McMillan’s warp ordering algorithm [25] to

draw pixels in the output image in back-to-front order without using the z-buffer and

splatting to address the resampling problem. This representation is compact (its size

grows only linearly with the observed depth complexity in the scene), but requires the

knowledge of the depth values for all the samples.

View dependent texture mapping

The standard texture mapped 3D models, though widely used, usually are not able to

reproduce in a completely satisfactory way effects such as lighting and reflections. A

possible solution, introduced for the first time in [26] and successively refined [27] is

to replace the single texture applied to the model with a set of views of the scene. The

proposed approach requires the availability of a representation of the geometry of the

scene and of a set of calibrated photographs taken in the same lighting conditions and

covering each surface in the scene from a few viewing angles. The geometry infor-

mation is used to reproject the views to the target viewpoint and then the information

from the different views is combined together.

The algorithm starts from a preprocessing stage. Firstly for each polygon the set of

views in which it is visible is determined. Then a hole filling algorithm is used to assign

a colour to the polygons that are not visible in any of the available views. The idea is to

assign a colour to the nearby polygons by averaging the information from the different

views and then assign a colour to each of the vertex of the hidden polygon by taking it

from the adjacent mesh elements. The last preprocessing step is the construction of a

view map for each polygon that stores the image with the closest viewing orientation

for a set of directions regularly sampled on an hemisphere.

The rendering process draws all the polygons in 3 steps. In the first the hidden

polygons are filled with the estimated vertex colours. Then the polygons visible in just

one view are rendered using the texture from that view. Finally the polygons visible

in more views are rendered. The position of the viewing direction of each of them

on the hemisphere is computed and the view maps are used to determine the three

closest views and their weights. Finally the three corresponding textures are applied

to the polygon using projective texture mapping and alpha blending to combine them

together.

2.3 Remote visualization by image transmission
One common approach to the remote visualization of 3D scenes, that can be considered

part of the image-based rendering techniques, is to perform the rendering at server side

and transmit to the client just the rendered views. Even if the key idea is quite simple

there are many different versions of this framework and various predictive compression

2.3 Remote visualization by image transmission 19

schemes have been developed to make it feasible. The remote visualization scheme that

is the main subject of this thesis represents an evolution of the previous system we built

based on this scheme ([28, 29]), and also an answer to the limitations of this family of

approaches. A brief overview of this approach and of its advantages and defects can

be useful to understand some choices that will be made in the proposed visualization

framework.

Image based
(3D warping)

Multiframe warpingSingle frame warping

Model based

Predictive schemes

Straight views

3D Remote visualization by way of image transmission

Figure 2.3: Remote visualization by image transmission

Figure 2.3 shows a general subdivision of the possible approaches to 3D visualiza-

tion by image transmission. The most straightforward solution is to render the required

view at server side and simply transmit it compressed using some suitable image com-

pression standards [30, 31, 32, 33]. This approach is plagued by the high data rate

required to achieve a good frame rate during the interactive browsing. Many proposed

schemes try to solve this issue by predicting at client side the requested view and

transmitting only the residual data. In the literature there are two major approaches to

prediction: in the first [34] the client has a simplified version of the 3D scene descrip-

tion that uses during fast motion while the server holds the full model and sends the

residual between the low and high resolution renderings when motion stops or slows

down. The second predictive approach [28, 35, 36, 37] is based on 3D warping. It

consists in using depth information to warp the already received views to the newly

required viewpoint in order to obtain a prediction of the required view. Finally the

residuals are sent. The various techniques differ in the way they built the prediction

and compress the residual data.

2.3.1 Basic structure
Remote visualization of 3D models by image transmission basically splits into two

parts what a standard 3D models browser does at client side by moving the rendering

task (completely or partially) at server side (see Figure 2.4). The basic scheme is

simple: the client sends the user’s requests to the server over the network. At server’s

side the graphic engine renders the required views and sends them back to the client as

compressed images. Finally the client decompresses and shows to the user the images

received from the server. Various image compression techniques can be exploited to

20 Chapter 2. Existing remote visualization techniques

Graphical
Engine

User
Interface

DisplayInput Device

CLIENT 3D Model

SERVER

events

view point

image

Network

�
�
�
�

�
�
�
�

Figure 2.4: Application structure (remote visualization)

reduce the bandwidth usage, but video compression ones are not suitable because we

do not know in advance the inspection path of the user. In such a remote visualization

scheme the whole 3D model stored on the server should not be transmitted to the client.

The main advantages of this scheme are the following:

• The memory and computational requirements at client side are very limited: it

has just to decompress and visualize images. Furthermore, the visualization’s

fluidity is independent of the 3D model’s size.

• Visualization at client side can start just after the first view (a single compressed

image) is received from the server without long initial downloads.

• Channel capacity is evenly used.

• The copyright control of the 3D models is fully ensured, since the end-user never

receive the whole model, but its rendered views only.

Unfortunately this approach has also some drawbacks:

• The transmission of several images per second to support a fluid navigation re-

quires a huge bandwidth. Predictive compression approaches can reduce the

bandwidth requirement but the compression of the residuals remains tricky.

• A powerful server is required to render the views, specially if the scene is com-

plex and there are several clients connected at the same time.

• These systems are very sensitive to network latencies and congestion.

If the clients have good computation and memory resources, it is fair to assume

them capable of supporting non standard decompression and visualization tasks which

may reduce the bit-rate of the transmitted datastream. In principle the heavier is the

work at client’s side the smaller can be the transmitted datastream.

2.3 Remote visualization by image transmission 21

L2(x,y) = L2(x,y) + E(x,y)L2(x,y)

L2(x,y)

SERVER

CLIENT

Rendering

V1 , V2

Prediction

E(x,y) V2

V1 , V2

Prediction

3D Model

L2(x,y)
L1(x,y) , Z1(x,y)

L1(x,y) , Z1(x,y)

�
�
�
�

�
�
�
�

Figure 2.5: IBR predictive compression scheme

2.3.2 Prediction of the views

The most common approaches to reduce the amount of data that need to be transmitted

from the server to the client are based on 3D warping. This is an image-based ren-

dering technique where the required view is predicted by reprojecting the previously

transmitted images to the new viewpoint using the z-buffer information. Figure 2.5

shows the general architecture of a client-server visualization system based on this ap-

proach. The prediction are compared with the actual rendering at server side and the

residual difference is sent to the client that will use it to correct its prediction.

Entering in more detail we can represent with V 1(x),x ∈ Q1 = [0, W1] × [0, H1]
the available view of the 3D model corresponding to the position c1 of the virtual

camera. In the reference system of V 1 the 3D position of pixel x = [x, y]T of V 1(x),
is X = [x, y, Z(x, y)]T where Z(x, y) is the z-buffer content at x. Let V 2(x′),x′ ∈
Q2 = [0, W1]× [0, H1] denote the next view, associated to user virtual camera located

at c2. The position X
′

of X in the reference system of V 2 is

X
′
=
[
x

′
, y

′
, Z(x

′
, y

′
)
]t

= T (X) = T (x, y, Z(x, y)) (2.3)

where T is a the projective transformation [38] between the two views, obtainable by

simple matrix products in homogeneous coordinates.

Denote with V̂ 2(x
′
) the IBR prediction of V 2(x′), i.e., the prediction of V 2 built

from V 1(x) and the corresponding depth information Z(x) via 3D warping. Neglect-

ing the Z-coordinate in (2.3) one may obtain

x
′
= t(x), x ∈ Q1 (2.4)

By defining with Ip = Q2 ∩ t(Q1) the samples of Q2 that can be predicted from Q1

and with In = Q2 − Ip its complement, the set of points that cannot be predicted with

the warping. The relationship between V̂ 2 and V 1 can be written as:

22 Chapter 2. Existing remote visualization techniques

V̂ 2(x
′
) =

{
V 1
(
t−1(x

′
)
)

x
′ ∈ Ip

0 x
′ ∈ In

(2.5)

Clearly, the computational complexity of the prediction depends only on the reso-

lution of the images and not on the 3D model, making the system particularly suitable

for very complex meshes. The reprojection gives an approximation of the required

view, but has an important limitation: it is a procedure of foreword mapping type [39]

and so it does not define V̂ 2(x) on all the points of the new view. The unpredicted

pixels (represented by In) can appear when parts of the scene not visible from V 1 enter

in the region that is visible from V 2. Furthermore inside Ip the prediction could be

wrong due to occlusions, different lighting conditions or quantization issues.

Several extensions of the 3D warping scheme have been developed in order to

overcome its drawbacks, for example combining the warping of multiple views, using

Layered Depth Images (images taken from a single viewpoint but with multiple pixels

along each line of sight [24]), or wavelet techniques [36].

Other extensions aim to fill the holes in the predicted view due to zooming opera-

tions. The simplest solution is the pixel splatting in which every pixel in the destination

image is mapped to all the pixels inside a square of a fixed size. A more complex so-

lution is to treat the reference image as a polygonal mesh and fill the warped mesh

elements as in 3D rendering.

A completely different approach, presented in [34], is to store a simplified or untex-

tured version of the mesh on the client and to use its rendering for the view prediction.

The server renders both the simplified and the complete model, subtracts the two ren-

derings and sends the difference to the client, which adds it to the prediction in order

to reconstruct the actual rendering.

2.3.3 Residual selection strategies

The main issue of this remote visualization scheme is how to efficiently compress and

transmit prediction errors. Since prediction errors become bigger when the predicted

view moves farther from the starting view, it is common to periodically send a full

view and the relative z-buffer in order to reset to zero the prediction error. The z-buffer

can be transmitted just for the reference view or for every frame. The second solution

allows better predictions but dramatically increases the amount of transmitted data.

The first and more obvious strategy is to transmit the difference between the correct

rendering and the prediction (Figure 2.6). This solution allows to perfectly reconstruct

the high quality rendering of the 3D model, but does not allow a very good compres-

sion. The error images contain many isolated pixels (high frequency content). Since

most of the classic transform coding tools (JPEG, JPEG2000, etc.) exploit the fact

that images essentially exhibit low frequency content, their performance on this kind

of data is rather poor.

The compression performance associated to the previous strategy is not satisfactory

and it is necessary to look for a trade off between the image quality and the bandwidth

2.3 Remote visualization by image transmission 23

a) b)

Figure 2.6: Prediction compensation: a) predicted image, b) error image

a) b)

Figure 2.7: Transmission of the undefined samples: a) predicted image, b) undefined

samples

24 Chapter 2. Existing remote visualization techniques

requirements. As shown in Figure 2.7 the most visually conspicuous differences be-

tween the predicted and the actual view are the undefined pixels in the predicted view,

V̂ i(X), x ∈ In.

We can introduce a new function representing the set of undefined samples:

ΨIni
(X) =

{
1 if X ∈ Ini

0 otherwise
(2.6)

by which the unpredicted part of the image can be written as

Mi(X) = V i(X)ΨIni
(X) (2.7)

This leads to a new strategy for the remote 3D visualization: firstly both the client

and the server compute the prediction of the required view. Then the server compares

it with the correct rendering. Instead of sending the complete difference between the

prediction and the correct rendering as in the previous case, it just sends Mi(X) i.e.

the samples that cannot be predicted with the warping. Finally the client adds Mi(X)
to the prediction and shows the resulting image to the user. It is worth pointing out that

while outside Ini
, Mi(X) is exactly equal to 0, Ei(X) on Ipi

generally assumes small

non-zero values, and the information associated to the complete difference is generally

much higher than that associated to Mi(X) because of high frequency contributions.

The rendered image quality with the second approach is lower, but the visual difference

between the two approaches is typically acceptable. However some artefacts remain

in the images rendered with the second approach because it can not handle changes in

the colour of the pixels due to reflections or lighting and occlusions from objects that

were not visible in the previous image. Basically it assumes that the prediction, when

available, is always correct, without compensating errors in the warped images.

A possible solution to the occlusions issue is presented in [29] and is based on the

observation that in the samples affected by occlusions the predicted and real z-buffer

values do not correspond. The idea is basically to make a comparison between the

predicted and the actual z-buffer at the server and to send only the pixels for which the

depth error is bigger than a fixed value and the unpredicted pixels.

Following the same approach of the previous case, we can define a new function

representing the samples that need to be compensated:

ΩIni
(X) =

{
1 if X ∈ Ini

or |Ẑ(X)− Z(X)| > K

0 otherwise
(2.8)

where Ẑ(X) is the depth of pixel X in the predicted view and Z(X) its actual depth

value (the comparison is done by the server). K is a constant representing the minimum

error on the depth for which we expect an occlusion. It allows to find a trade-off

between image quality and transmitted data (for small K more samples are transmitted,

while for a very large K, ΨIni
(X) � ΩIni

(X)).

The residual can be written as

Ni(X) = V i(X)ΩIni
(X) (2.9)

2.3 Remote visualization by image transmission 25

The new algorithm is the same of the previous case, where residual Mi(X) is re-

placed by Ni(X). This strategy is a sort of compromise between the error and the

complement image strategies and offers a reasonable image quality without sending

all the pixels of the error image. Unfortunately it does not handle the colour problems

due to lighting and is not suitable in the case of reflective objects. There are also other

approaches to the selection of the information that needs to be transmitted, for example

Yoon and Neumann [35] suggest a method in which the samples are selected using an

heuristic ray intersection test.

2.3.4 Compression of the transmitted data

The data that needs to be transmitted in a predictive scheme for remote visualization of

3D models can be divided into three main categories: the images, the depth information

and the prediction compensation data.

The complete images can be compressed by any image compression standard, for

example JPEG2000 (see Section 2.4). The depth information seems easier to com-

press, but since the edges in the Z-buffer are fundamental for a correct reprojection,

depth information needs to be compressed very carefully. Current video cards use 32

bits representations of the Z-buffer, but a smaller accuracy is sufficient for the compu-

tation of the warpings. Experimental tests showed an 8-bit quantization of the depth

values offers a good trade-off. The data can be then compressed using lossless com-

pression tools (such as the LZ77 algorithm) or lossy image compression standards such

as JPEG2000. In this case it is necessary to use a high bitrate, because lossy compres-

sion artefacts on the edges can lead to wrong reprojections1. Since either depth infor-

mation and the residual need to be transmitted, it is not worth paying a data reduction

in the depth maps with extra data for the residual and a trade-off must be found.

The compression of the residual remains the biggest issue. Standard waveform

based image compression tools do not work very well with this kind of data. The

bitstream associated to the difference images compressed with JPEG can be even big-

ger than the bitstream associated to the original full images JPEG compressed with a

similar quality. JPEG2000 offers better performances than JPEG with the error im-

ages, but the data size remains too big for an interactive browsing system. It is also

important to note that error images are differences and so require an additional bit for

the sign. Possible solutions are to use a compression standard that supports higher

bit-depths (such as JPEG2000) or to quantize the colour components by removing the

less significant bit as in [34]. The images associated to the other two approaches can

instead be compressed more efficiently using JPEG or JPEG2000, the plots of Figure

2.8 and 2.9 show an example of the transmitted data for a short sequence of views in

the two cases2. Another possible solution, is to send a list of the pixels that need to be

1 A more sophisticated Z-buffer compression strategy based on the region of interest (ROI) feature

of JPEG2000 and on a reshaping of the dynamic range of the depth is found in [40]. Other approaches

are based on context modeling [41] and on the representation of the depth map as a triangular mesh [42].
2The plots show the data transmitted by the system described in [29] for a set of views of the 3D

model shown in Figure 2.7.

26 Chapter 2. Existing remote visualization techniques

frame total dimension
JPEG image frame component
frame supplement data

Data (bytes)

views
0

5000

10000

15000

20000

0 5 10 15 20 25 30

Figure 2.8: Example of transmitted data in remote visualization with correction of the

undefined samples (320x240 pixels)

Image and residual Z−buffer Wrong pixels list

Figure 2.9: Example of transmitted data in remote visualization with depth compari-

son (300x260 pixels)

corrected, then pack them one after another in an array and lossless compress all the

data.

Even if this remote visualization scheme has some useful features, it is not com-

pletely satisfactory. The most critical issue is the transmission of the prediction error

for every frame, that is difficult to compress, forces the server to compute the render-

ing of all the required views for every client and requires a low network delay. The

new approach that will be introduced in this thesis is still based on the transmission of

images and depth information, but will introduce a way to exploit the information from

several images and depth maps to reconstruct the new views at client side without the

need to correct them by sending the prediction error data.

2.4 Compression and transmission of 2D images with JPEG2000 and JPIP 27

2.4 Compression and transmission of 2D images with
JPEG2000 and JPIP

The remote visualization system that is described in this thesis is heavily based on

the JPEG2000 image compression standard both for geometry and texture informa-

tion. From a certain point of view it represents an attempt to extend some of the ideas

behind this compression standard from the 2D image world to 3D scenes browsing.

A complete description of the standard is out of the purposes of this thesis (a very

comprehensive one is given in [8], while a good overview is [43]): instead in this sec-

tion, after a brief overview of the basic ideas behind JPEG2000 we will focus on the

scalable compression and transmission features that will be exploited in the proposed

interactive visualization system.

2.4.1 Compression standard brief overview

�����
��	
������

�����
��	
������

���

�����
��������

��������
�����

����������
�������
��
��

�����

���������

���

Figure 2.10: Overview of JPEG2000 compression

The procedure to compress an image in JPEG2000 is made of several steps, as

shown in Figure 2.10. The images can be initially divided into non-overlapping blocks

(tiles), then each tile is compressed as an independent image. The first step consists

in applying a DC level shift to every sample in the source tile in order to transform

the unsigned colour samples into signed values centred around the zero. JPEG2000 is

able to compress images with an arbitrary number of components, in the case of stan-

dard RGB images (such as texture information), a colour transform can be applied to

convert them into the Y CbCR colour space. The standard supports two different types

of colour transform, one reversible component transformation (RCT) that can be used

both for lossy and lossless compression and one irreversible component transformation

(ICT) that can be used only for lossy coding. This transform has three main targets: it

decorrelates the colour components in order to achieve a better compression efficiency;

it permits to exploit the bigger sensitivity of the Human Visual System to the luminance

(Y) component in the quantization step; finally the reversible transformation allows a

perfect reconstruction in the case of lossless compression.

The irreversible mapping from the RGB to the Y CbCR is given by equation 2.10 :

28 Chapter 2. Existing remote visualization techniques

LH2

LL2 HL2

LH1 HH1

HL1

HH2

LL1

LL0

image

Figure 2.11: 2-level DWT decompostion

⎛⎝ Y
Cb

Cr

⎞⎠ =

⎛⎝ 0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.419 −0.081

⎞⎠⎛⎝ R
G
B

⎞⎠ (2.10)

This step is not applied to single component greyscale images (depth information

can be represented as greyscale images, Section 3.2 will show the procedure used to

compress the depth maps in JPEG2000).

The following step is the Discrete Wavelet Transform. The standard allows to

use two different kind of transform, the (9,7) floating point Daubechies transform is

usually used for lossy compression, while the (5,3) integer transform must be used if

the target is to achieve lossless compression. As shown in Figure 2.11, every step of

the transform divides the image into 4 different subbands, the low frequency subband

(LL) correspond to a lower resolution version of the image, while the 3 high fre-

quency bands (LH, HL, HH) contain the details. The LL subband is then iteratively

decomposed with the same procedure. The number of levels is not fixed, but usually 5

levels are used. After a L level wavelet decomposition we obtain a low frequency sub-

band at the deepest resolution level, that in the rest of this thesis will be denoted with

LLL, and a set of high frequency subbands LHi, HLi, HHi for each resolution level

i = 1, .., L − 1 (with this notation the image corresponds to the LL0 subband). The

wavelet decomposition offers a straightforward way to obtain the resolution scalability

in JPEG2000 images. After the transform, a deadzone scalar quantization (where the

central quantization interval is double the size of the others) is applied to the wavelet

coefficients. A different quantization step size can be chosen for each subband. After

the quantization the coefficients in each subband are divided into packets correspond-

ing to rectangular non-overlapping regions. Then the three packets corresponding to

the same region in the three high frequency subbands at the same resolution level are

grouped together into precincts. The precinct subdivision allows an efficient spatial

random access to the compressed data. Chapter 3 will show how this feature can be

2.4 Compression and transmission of 2D images with JPEG2000 and JPIP 29

exploited in an interactive browsing framework to transmit only of the region of every

view required for the requested rendering. Finally the precinct are divided themselves

into regular non-overlapping rectangles called codeblocks that will be the fundamental

elements in entropy coding.

The next step is the entropy coding of the code-blocks. Every code-block is coded

independently using a context-dependent binary arithmetic coding technique (the MQ

coder) and the EBCOT paradigm [44]. This efficient fractional bit-plane coding pro-

cess produces a finely embedded bit-stream that can then be truncated at any desired

point, allowing a trade-off between image quality and coded length. A detailed de-

scription of the coding technique is out of the scope of this thesis (it can be found in

[8]).

LH2

LL2 HL2

LH1 HH1

HL1

HH2

LL0

image

LL1

embedded
code-block
bit-streams

precinct

packets
p1 p2 p3

Figure 2.12: Basic JPEG2000 elements communicated by JPIP.

2.4.2 Scalability features in JPEG2000
As described in the previous section JPEG2000 is a highly scalable image compres-

sion standard, and the compressed representation contains numerous embedded sub-

sets, each corresponding to an efficient representation of the original image at some

reduced resolution, reduced quality, or over a particular spatial region of interest. Fig-

ure 2.12 shows the basic elements of this representation. As explained in the previous

section, the subbands of the discrete wavelet transform are partitioned into code-blocks,

typically measuring 32× 32 samples each.

Code-blocks are organized into spatially coherent square regions in each resolu-

tion component, corresponding to the precincts. The code-block bit-streams associ-

ated with each precinct are then put into JPEG2000 packets. Each packet contains

some incremental contributions (possibly empty) from each of the code-block inside

the corresponding precinct and can be interpreted as a quality increment for a certain

30 Chapter 2. Existing remote visualization techniques

region in a certain resolution level. The absence of one or more trailing packets is

equivalent to truncation of the code-block bit-streams. The subdivision of the data in

the packets for a JPEG2000 compressed image is usually arranged in order to made

this truncation rate-distortion optimal, i.e. the best possible image quality for a certain

amount of bytes is obtained by discarding the same number of trailing packets from all

precincts. The collection of packets corresponding to a certain quality in the image is

usually called quality layer. Table 2.2 summarize the names used for the different data

partitions in JPEG2000.

Data Set of the 3 Single

partition high frequency bands band

Resolution Resolution level Subband

Resolution and position Precinct Code-block

Resolution, position and quality Packet -

Table 2.2: Jpeg2000 data partitions

2.4.3 The JPIP transmission protocol
A very efficient system to transmit JPEG2000 compressed images is described in the

JPIP standard. This protocol allows to build interactive image browsing applications

that fully exploit all the scalability features offered by the compression standard. In

JPIP image browsing the user at client side can interactively browse an image that is

stored at server side in a very efficient way by progressively transmitting only the part

of the image that best fits the user’s requests. To achieve this target JPIP does not

deal with JPEG2000 code-blocks or packets directly. Instead, it starts by concatenat-

ing all the packets associated with a precinct to form a single precinct data-bin. Each

precinct data-bin thus represents the information corresponding to a certain spatial re-

gion and resolution component. The data for each precinct data-bin can be transmitted

progressively thus gradually increasing the image quality for that region. JPIP also

defines other types of data-bins, for encapsulating compressed data headers and meta-

data. This allows JPIP to be used to communicate rich content in a progressive and

selective manner.

The JPIP standard can be used also to browse multiple image at the same time, a

very useful feature for the proposed remote visualization scheme. The Part 2 of the

JPEG2000 standard [45] defines the JPX file format, that allows to include several

compressed images into a single file together with a customizable metadata structure

that can be exploited to store additional parameters of the 3D scene (see Section 3.2).

JPX files can be represented in JPIP in terms of large collections of data-bins, thus

allowing us to represent a full set of source views and depth maps within a single JPX

file, which can then be transmitted dynamically to the client.

The Kakadu software tools [46] contains an efficient implementation of JPIP which

is also able to handle JPX files. The client and server modules of this application

have been integrated into the proposed 3D visualization system and are used for the

transmission of both the geometry and texture information, as described in Chapter 3.

2.4 Compression and transmission of 2D images with JPEG2000 and JPIP 31

Cache Model

imagery

high level �window� requestJPIP Server JPIP Client

Target File
(multi-image JPX File) Decompress/render

Graphical User
Interface

JPIP message stream

Client Cache

window
to render

window of
interest

status

JPEG2000
data-bins

Figure 2.13: Client-server interaction in JPIP

2.4.4 Client-Server Interaction in JPIP

Figure 2.13 shows the general architecture of a client-server system based on the JPIP

standard. The server holds the compressed image and progressively sends the informa-

tion from the various precinct data-bins to satisfy the client requests. The user at client

side can interactively browse the image and request the part of the image in which he

is interested. A first important element is that the client does not explicitly request

data-bins to the server. JPIP instead defines a request language which allows clients

to express what they are interested in, using comparatively high level descriptors. For

example in the case of standard image browsing the client could request a particular

region of interest in the image at a particular resolution level. The client has a local

cache system that holds a representation of the source data that is progressively im-

proved with the information transmitted by the server and it may render the images

at any time, based on its current cache contents. An important feature of JPEG2000

is that the image can be rendered from any arbitrary subset of the precinct data-bins

which might be available at a certain time. The client can then continuously improve

the rendering as soon as more data arrives from the server. This allows the rendering

at the client to be completely asynchronous with server communications.

After the client has made a request, the server essentially streams JPIP messages

to it, where each JPIP message consists of a single byte range from a single data-bin.

The messages sent by the server are used to improve the contents of the data-bin in

the client cache. The server attempts to send the most appropriate messages to satisfy

the client request. However, when the client issues a new request, the server adjusts its

transmission policy, but there are no strict requirements on when and how the change

will happen. Usually JPIP servers maintain a model of the client’s cache, in order to

know which representation of each data-bin is held by the client.

These features are particularly good fit for 3D scene browsing. The freedom of

the server to form its own decisions regarding the best way to improve a synthesized

view at client side is particularly useful in such an environment, where there are many

different views and depth maps from which the information to be transmitted need

to be selected. In the proposed 3D browsing environment the client does not have a

complete knowledge of the scene, it does not even know which views are available,

and cannot efficiently decide which elements it needs. The server can also exploit

additional information on the scene geometry or compression distortion that would

add an high transmission overhead if sent to the client.

32 Chapter 2. Existing remote visualization techniques

It is worth noting that JPIP does not currently provide a request syntax which can

be used to explicitly represent the parameters the view V ∗ of interest for 3D browsing.

However, in Section 3.3 we will introduce a possible extension to the context fields in

order to handle this kind of requests.

Chapter 3

A new approach to remote 3D
visualization

Before introducing the new remote visualization framework, let us have a brief recall of

the biggest issues of the existing schemes: an efficient remote browsing system should

try to overcome this problems. The standard approach to the remote visualization of 3D

models, based on downloading the complete description of the scene and performing

the rendering at client side, is well-suited to represent the complete 3D scene. However

it presents some drawbacks in an interactive exploration over a bandlimited channel:

• High resolution models can easily require tens or hundreds of megabytes, and

require a long initial download time before starting the exploration. The user is

forced to download all the model description even if in the actual exploration

involves only a small section of it.

• Smooth navigation of complex scenes requires very powerful computers. Both

the amount of memory required to store them and the computational power re-

quired to perform the rendering at high frame rates could be huge. Dedicated

graphics hardware can help to deal with this issue, but photorealistic representa-

tion of complex scenes are still challenging.

• The construction of a high quality 3D model can require months of work, but

after users download it the complete description is stored at client side and the

author loses control over its diffusion.

As described in Section 2.2 image-based rendering techniques try to deal with these

issues by representing the 3D data as a collection of images and (eventually) depth

information. They usually allow a photorealistic representation but they also introduce

other problems:

• Some techniques (for example the light fields) require a huge amount of data to

represent the 3D scene. They do not use geometric information to exploit the

redundancy between close views and so the representation is not so compact as

the traditional 3D representation based on mesh and texture. Unlike the classic

34 Chapter 3. A new approach to remote 3D visualization

scheme they do not require to transmit to the client the complete dataset, but just

a small subsection of it. This permits to use “light” clients, but a powerful server

is needed to hold the data.

• Other techniques based on the transmission of views perform the rendering at

server side. This strategy will allow to use very simple clients but also requires

very powerful servers, specially if they need to handle a lot of clients.

• A common approach is to reduce the dimensionality of the plenoptic function

by introducing constraints on the view parameters, thus reducing the freedom of

exploration.

• Some techniques, like the rendered image transmission, require an interactive

real-time response of the server to the user’s request at client side. Temporary

network congestions or transmissions latencies can have a severe impact on their

performances.

Feature Model-based Image-based

Random access Difficult Easy

Redundant information No Yes

Startup latency High Low

Sensitivity to network latency Small Big

Photorealistic rendering Difficult Yes

Server requirements Low Can be high

Client requirements High Low

Copyright protection No Yes

Table 3.1: Comparison of the image-based and model-based approach to interactive

3D browsing.

From this review (see Table 3.1) it is clear that in an interactive browsing frame-

work both the model-based and image-based approaches have different drawbacks and

a good solution should try to combine the best aspects of the two solutions. The new

approach to the remote visualization of 3D scenes which will be presented lays in the

middle between a model-based approach and an image-based one and tries to offer an

answer to the many difficult issues of remote 3D browsing. Before introducing it, let

us have a brief overview of the targets we will try to achieve.

• The system should be able to exploit the available bandwidth in the best possible

way. This requires to transmit only the information really needed for the current

view. At the same time it is also necessary to avoid the transmission of redundant

information and to exploit the previously transmitted data to render the newly

required views. Scalable geometry and image compression techniques should

be exploited to achieve this target.

• An interactive visualization system should be able to follow the user’s real-time

exploration by continuously improving the available description on the basis of

35

the user’s point of interest. The system should continue to show to the user the

views he requires exploiting the already received information. It should also im-

prove them as soon as new data becomes available without stopping the browsing

while waiting for additional data to be transmitted. The user should be able to

continue the navigation also when the network is congested or the connection

goes down even if with reduced image quality.

• Another target is to achieve a good frame-rate without requiring a powerful

client. Complex scenes can require huge amounts of data and a powerful com-

puter to render them in real-time. Thus to achieve this target is necessary to use

an approach that does not depend on the complexity of the scene.

• A good image quality is of course another important requirement.

• In some cases it is also important to try to avoid the transmission of the complete

scene description or other data that allow to reconstruct it to the client to avoid

the loss of control on the distribution of the 3D data.

• Visualization at client side should start without delay, as soon as a limited amount

of data is sent by the server.

• Data transmission should be based on the available bandwidth, in order to avoid

navigation delay. In other words it should be possible to change the accuracy of

the transmitted representation of the scene in order to find a trade-off between

the amount of transmitted data and the rendering quality suitable for the current

bandwidth availability and client capabilities.

Finally a last important aspect of remote 3D visualization must be underlined. The

user at client side can interactively browse the scene and determine the particular views

of interest, we do not know in advance the inspection path, differently from other

problems such as video transmission. The user is expected to navigate between a

variety of different views, but we do not know ahead of time which views will be of

interest and how much time (transmission resources) the user will choose to devote to

any particular view.

At one extreme, the user’s interest may remain focused on a single view for a con-

siderable period of time, waiting until a very high quality rendering has been recovered

before moving on. At this extreme, the interactive retrieval problem is very similar to

that of interactive image browsing, which is addressed most elegantly by progressive

transmission of a single scalably compressed image.

At the opposite extreme, the user may select many different views in rapid succes-

sion, with the aim of understanding the scene’s geometry. This phase might perhaps

be a precursor to a detailed inspection of some particular view of interest. Since suc-

cessive views are closely related, the most natural way to improve the efficiency of the

browsing experience is to predict each new view from the ones that have already been

transmitted, and then transmitting the prediction residuals. However, as previously

described this approach suffers from a number of drawbacks.

36 Chapter 3. A new approach to remote 3D visualization

� �

��

��

��

�

Figure 3.1: Overview of the browsing environment. The server holds scalably com-
pressed representations for a set of “original view images,” V i and for the surface
geometry, G.

3.1 Proposed scheme
Considering the above arguments, let us introduce a framework for interactive scene

browsing. The basic scheme is made by a server-client couple connected via a ban-

dlimited channel. The server holds the scene description and delivers incremental

contributions from two types of pre-existing data (Fig. 3.1):

• Scalably compressed images of the scene from a collection of pre-defined views,

that will be denoted with V i;

• A scalably compressed representation of the scene surface geometry, G. This

representation can be replaced by a set of scalably compressed depth maps Zi,

as will be described in Section 3.2.

The server does not generate new views or compress differential imagery. Instead,

it determines and sends appropriate elements from a fixed set of scalable compressed

bit-streams, so as to provide its clients with the most appropriate data from which to

render their desired views. The client performs the rendering of the required views

exploiting the information it has received from the server.

Figure 3.2 shows the complete system architecture. The server and the client are

connected via a bandlimited channel, usually represented by the internet connection.

The server stores the geometry description and a set of high quality views. At client

3.1 Proposed scheme 37

������

���	�
��	���� �������������

�����
������
��
���

����
���

����� �����
�������

���������

 ����!�"�#$
%������

���
�

Figure 3.2: Overview of the proposed system

side, the user interactively determines the particular view of interest. The client ap-

plication then communicates the parameters of the required view to the server. The

server sends progressively compressed geometry information and texture, according

to the user position and available bandwidth. The server does not send all its data,

but only the part that best fits the user’s needs and the available bandwidth (the policy

to determine which elements need to be sent will be the subject of Chapter 6). The

client stores the 3D data and texture it receives from the server into a cache memory.

The available geometry and texture information is combined into the rendering of the

required view at client side according to a rate-distortion policy that will be introduced

in the next chapters. During the interactive browsing the client tries to use the available

data the best way it can while the server continue improving the scene representation

at client side by sending additional texture and geometry data. The user can navigate

the 3D environment also in the case of a congested network or even if the connection

is down, since the client is asynchronous with the server, i.e. it will continue rendering

with the data it has without waiting for the server communications.

Our proposed framework is particularly appropriate in view of the fact that 3D

scene representations are usually generated from a collection of original 2D images;

these are natural candidates for the set of available views V i. If the client happens to

request one of the original view images, it can be incrementally served directly from

its scalably compressed representation. Interestingly, though, this might not always be

the best policy. If the client has already received sufficient elements (sufficient quality)

from one or more nearby original view images, V k1 , V k2 , ..., it may be more efficient to

send only the geometric information required for the client to synthesize the requested

view, using the resulting bandwidth savings to further augment the quality of these

nearby original view images. It follows that even if the server has a huge number

of original view images, an efficient service policy would effectively subsample them

based on the interactive user’s navigation patterns. More generally, the server may

choose to send some elements from V i, while expecting the client to derive other

aspects of the view from the previously delivered, but less closely aligned original

view images, V ki .

The proposed framework may thus be interpreted as fostering a greedy strategy

for non-linear approximation of the plenoptic function, since it considers both view

sub-sampling and rate-distortion criteria. The fact that efficient service policies can

be expected to sub-sample the existing content automatically, brings the proposed ap-

proach into contrast with the predictive approach mentioned previously, where imagery

38 Chapter 3. A new approach to remote 3D visualization

is delivered for every view requested by the user.

In the following sections we will describe the general architecture of our system,

while the rest of the thesis will discuss the two fundamental issues of how to combine

the information available at client side into the required rendering and how to decide

which part of the texture and geometry description need to be transmitted. In particular

chapters 4 and 5 try to give an answer to the first question, while the policy transmission

for the server will be the subject of Chapter 6

3.2 Scene representation
The three dimensional scene is stored at server side and represented as a multitude of

original image views together with the corresponding depth maps. This representation

is particularly appropriate in view of the fact that 3D scene representations are usually

generated from a collection of original 2D images, and most 3D acquisition systems

such as laser scanners produce as output images with the corresponding depth. This

approach allows to avoid to combine together the views into a unique three dimen-

sional representation, a very challenging step which usually require a huge amount of

work (see [47]). The proposed scheme does not rely on a particular arrangement of the

images acquisition points and viewing directions, i.e. the views need not to be taken

from a set of viewpoints with a certain geometrical distribution. The viewpoints can

be freely chosen during the acquisition procedure, but the camera projection matrix

associated with every view must be known (e.g. it is necessary to know the view-

point, the view direction and the camera parameters for every view). The set of views

should cover the whole scene, but the different viewpoints can be chosen without any

particular constraint. For example it is possible to have more views in an area with a

particularly complex geometry structure, or where are present interesting details (e.g.

it is possible to have an evenly spaced set of images which cover all the scene and then

some close-up views of the most interesting details). An example of the data available

at server side is shown if Figure 3.3.

Procedure Acquisition Hardware Depth Photorealistic

complexity cost accuracy renderings

Range camera views Medium High High Yes

Pictures and passive Medium Medium Low Yes

depth reconstruction

3D model High (*) (*) No

3D model with real images High (*) (*) Yes

Synthetic models Low(**) None High No

(*) Depends on the acquisition technique used to build the 3D model

(**) Assuming model already available

Table 3.2: Data acquisition procedures

We envisage various data acquisition procedures, Table 3.2 shows some possible

choices. The first is to use a range camera (see Figure 3.4) to acquire a set of images

with the corresponding depth maps and then register the different views together. The

3.2 Scene representation 39

Figure 3.3: Example dataset for a Santa Claus statuette

proposed approach requires to know the camera parameters and so to perform the

registration step after the acquisition but it allows to skip the integration of the 3D

data, that is usually a challenging operation.

Figure 3.4: 3D acquisition with a range camera

Another option is to take a set of pictures of the scene using a standard camera and

then reconstruct the depth information using passive techniques such as stereo vision

or space carving. A common way to use this acquisition system in the case of small

objects is to place the object on a turntable and take a set of pictures by rotating the

turntable of a fixed step after each photo (Figure 3.5). The depth maps can then be

reconstructed using space carving, stereo vision or a combination of them. Figure 3.3

shows an example of images and depth maps acquired with this techniques; the dataset

is made of twenty pictures spaced of 18 degrees each and the corresponding depth maps

40 Chapter 3. A new approach to remote 3D visualization

Figure 3.5: Turntable setup

built using the method described in [48], which combines stereovision with silhouette

information.

Otherwise it is possible to reconstruct a full 3D model of the scene using one of

the various available techniques and render the views and depth maps from it with any

3D rendering software. This approach offers a greater freedom in the choice of the

viewpoints and permits to render a huge number of views, but requires a lot of work to

build up the 3D model. Another issue is that the use of a single texture applied to the

model instead of a set of views implies a loss of information and a less photorealistic

image quality. To avoid this problem it is also possible to use depth maps extracted

from a 3D model combined with real views of the scene for which camera parameters

registered with the model are available. The 3D rendering approach can also be used

to exploit the proposed system in interactive visualization of synthetic 3D scenes built

with CAD or 3D modeling software. Figure 3.6 shows an example dataset built from a

textured 3D model of the Goku cartoon character. It includes 8 side views of the model

spaced of 45 degrees, a top and a bottom view.

After the acquisition the views and depth information are stored at server side. A

projection matrix is associated with every view. The server only uses the available

views and does not need to compute new views during the interactive navigation. This

approach permit to reduce the computational complexity at server side, allowing a not

too powerful server to handle multiple clients at the same time. Another advantage is

that the server transmits only views and depth maps (that are represented as greyscale

images) and so a standard image server can be easily extended to an interactive visual-

ization system. In our case the JPIP interactive server included in the Kakadu software

tools will be used (see Section 2.4.3).

All the available views are scalably compressed using JPEG2000 and stored into

a single JPX file on the server. The compression is done using the Kakadu coder

[46]. The images are compressed exploiting the JPEG2000 scalability features to di-

vide them in packets corresponding to the different resolution levels, spatial positions

and quality layers. All these packets can be progressively transmitted. After the com-

pression the different JPEG2000 images are packed together into a single JPX file (see

3.2 Scene representation 41

Figure 3.6: Example dataset for a synthetic model of the Goku cartoon character

42 Chapter 3. A new approach to remote 3D visualization

kdu_compress.exe -i 1.bmp -o 1.jp2 -rate 0.8,0.4,0.2,0.1,
0.05,0.025,0.0125 Cblk={32,32}

kdu_compress.exe -i 2.bmp -o 2.jp2 -rate 0.8,0.4,0.2,0.1,
0.05,0.025,0.0125 Cblk={32,32}

kdu_compress.exe -i 3.bmp -o 3.jp2 -rate 0.8,0.4,0.2,0.1,
0.05,0.025,0.0125 Cblk={32,32}

kdu_compress.exe -i 4.bmp -o 4.jp2 -rate 0.8,0.4,0.2,0.1,
0.05,0.025,0.0125 Cblk={32,32}

kakadu\kdu_merge.exe -i 1.jp2,2.jp2,3.jp2,4.jp2
-o object.jpx

Figure 3.7: Example script to compress a 4 images dataset

Section 2.4) using the kdu merge tool. Figure 3.7 shows an example of the script used

to compress the data for a 4 images dataset. In the datasets used for the system testing

we used 7 different quality layers in the range from 0.0125 bpp to 0.8 bpp. Every qual-

ity layer has double the bitrate of the previous one. Using a resolution of 1024x768

pixels this choice leads to an average size of 77KB for every view at the maximum

quality, while the first quality layer is just 1,2KB, corresponding to a poor image qual-

ity but still enough to allow the client to show something to the user before more data

becomes available. Figure 3.8 shows an example of the image quality corresponding

to the different quality layers, while Table 3.3 shows the size of some multiple images

compressed files used to evaluate the system.

Name Resolution Number Total Average

of views size image size

Santa Claus 2048x1536 60 19 MB 314 KB

Santa Claus 1024x768 60 4,6 MB 77 KB

Goku 1024x768 8 560 KB 70KB

Goku 640x480 8 241 KB 30 KB

GT car 1024x768 8 615 KB 77 KB

Table 3.3: Example of image datasets

The surface geometry is also available at the server in the form of scalably com-

pressed depth maps, again corresponding to a multitude of original views. It is not

strictly necessary that views and depth maps are taken exactly from the same view-

points, but by matching every view with the corresponding depth map it is possible to

ensure a better reprojection quality and also the acquisition procedure is easier. All

the examples shown in this thesis refer to set of images and depth maps taken from

the same viewpoints. The depth maps are also compressed in JPEG2000. This is a

quite common choice for depth maps compression and even if ad-hoc compression

techniques for depth information are available, usually they do not offer all the scala-

bility features of JPEG2000. Another advantage of this representation is that the same

transmission system can be used both for geometry and texture information.

Before compressing the depth maps it is necessary to represent the depth values

as images. As shown in Figure 3.9, we assume that all the objects visible in a certain

image and the corresponding depth values lays between two planes that in computer

3.2 Scene representation 43

�������	
���� ������ �����	���� �����	������

� ��������		 ��
���

� �������		 ������

 ������		 ����

� �����		 �����

� �����		 ����

� �����		
����

� �����		 �����

Figure 3.8: Image samples for the different quality layers

44 Chapter 3. A new approach to remote 3D visualization

��������	�

������	�

��
��
���
���
�

�

�

�������	�

Figure 3.9: Depth values represent positions between the near and far plane

graphics are called near plane and far plane. To perform the conversion we firstly

define the position of the near and far plane and then the depth values acquired from

the range camera are converted in a set of values from 0 to 1 representing how far

they are from the two planes. The values are distributed in a non-uniform way to

achieve a better precision in proximity of the near plane. In the case of synthetic data,

the values in the videocard framebuffer returned by 3D libraries such as OpenGL are

already scaled in this way. The values are then converted in an integer representation

by multiplying them for 2nbits and rounding, where nbits is the number of bit per pixel

in the image. Preliminary tests carried out using 8 bpp greyscale images have shown

a poor accuracy in the depth values. We found that by representing the depth maps

as 16 bit per pixel greyscale images it is possible to obtain a good trade-off between

compression performance and depth accuracy.

kdu_compress.exe -i d1.rawl -o d1.jp2 -rate 0.8,0.4,0.2,0.1,0.05,0.025,
0.0125 Sprecision={16} Scomponents={1} Ssigned={no} Sdims={768,1024}

kdu_compress.exe -i d2.rawl -o d2.jp2 -rate 0.8,0.4,0.2,0.1,0.05,0.025,
0.0125 Sprecision={16} Scomponents={1} Ssigned={no} Sdims={768,1024}

kdu_compress.exe -i d3.rawl -o d3.jp2 -rate 0.8,0.4,0.2,0.1,0.05,0.025,
0.0125 Sprecision={16} Scomponents={1} Ssigned={no} Sdims={768,1024}

kdu_compress.exe -i d4.rawl -o d4.jp2 -rate 0.8,0.4,0.2,0.1,0.05,0.025,
0.0125 Sprecision={16} Scomponents={1} Ssigned={no} Sdims={768,1024}

kdu_merge.exe -i d1.jp2,d2.jp2,d3.jp2,d4.jp2 -o depth.jpx

Figure 3.10: Example script to compress a 4 depth maps dataset

Figure 3.10 shows the script to compress the depth information, we used the same

bitrates as the images, corresponding to a much higher quality in the depth maps, but

a high quality representation is needed for accurate reprojections and the progressive

transmission system allows to send only a subset of the data if the complete information

is not worth transmitting. The final step consists in including into the metadata field of

the JPX file the information on the near and far planes.

3.3 Server overview 45

� �

���������	

��������

���������
�����������

������������
�������

��������������

�����������������		���

����
����������

�
���

�
�

������������
 ���!�����������������"

�������������������	
���#��

Figure 3.11: Overview of the server application

3.3 Server overview
In the proposed system the rendering is performed at client side and the server ap-

plication has only the function of transmitting the compressed image and geometry

information to the client. Figure 3.11 shows the basic architecture of the server appli-

cation, that is divided into two main modules. The first one is a modified version of a

JPIP server for interactive transmission of JPEG2000 images (see Section 2.4.3). We

built it over the JPIP server included in the Kakadu software. This module has access

to the two compressed files containing the depth and the image information and trans-

mits in a progressive way the various packet corresponding to the different elements of

the views and depth maps to the client on the basis of the requests received from the

user at client side.

Cache Model

imagery

high level “window” requestJPIP Server JPIP Client

Target File
(multi-image JPX File)

Decompress/render

Graphical User
Interface

JPIP message stream

Client Cache

window
to render

status

JPEG2000
data-binsCache Model

imagery

high level “
(including viewing parameters)

” requestJPIP Server JPIP Client

Texture
(multi-image JPX File)

Decompress

Interactive 3D
Viewer

JPIP message stream

Client Cache

window
to render

view
parameters

status

JPEG2000
data-bins

Target File
(multi-image JPX File)

Depthmaps
(multi-image JPX File)

Figure 3.12: Modified JPIP architecture for 3D browsing

Figure 3.12 shows how the general structure of a JPIP system shown in Figure 2.13

can be extended to the case of 3D browsing. A key difference is that in standard JPIP

application the requests are made in terms of spatial regions and resolution levels of the

images, while in this particular case the user is asking for 3D views. Fortunately the

JPIP standard allows to add contexts to the standard image requests to handle special

needs. For the purpose of this project we added a new context type (that we identify

46 Chapter 3. A new approach to remote 3D visualization

with the string “JP3D”) to the standard ones. The client request will contain the

identifier of the new context followed by a parameter string. The syntax of this string

is the following:

jp3d-geometry = rREQUESTvFLOATvFLOATvFLOAT ...

The “REQUEST”parameter identify the type of request the client is going to made

to the client, while the number of following floating points values depend on the type

of request. In the current implementation we have included only two possible requests,

each of them followed by 16 floating point values corresponding to the coefficients of

the projection matrix corresponding to the viewpoint and gaze orientation selected by

the user at client side (see Table 3.4). The first (called “KDU JPIP 3D WINDOW”)

updates the viewing parameters with the new camera matrix. The second (called

“KDU JPIP 3D UPDATE”) updates the parameters and also forces an immediate re-

computation of the packets that are going to be transmitted. This difference is neces-

sary because the current practical implementation is not fast enough to recompute the

packets to be transmitted every time the user at client side changes the viewpoint, spe-

cially if he is moving very fast around the scene. A practical solution is that the server

checks if the view parameters have been changed every t seconds and in this case it

recomputes the packets that need to be transmitted. In the current implementation t
is a few seconds but the software still has not been optimized and preliminary stud-

ies suggest that the system can perform the calculation much faster (at least 10 times

faster). This procedure works fine combined with the first request type with whom the

client can signal to the server that the viewing parameters have changed. Otherwise

the client can force the server to recompute the packets immediately using the second

request type. A very important aspect of this request procedure is that the client is

going to transmit to the server only the camera parameters, i.e. the client is not asking

for some elements of a particular view or depth map. It just sends the viewing pa-

rameters and it is the server that decides which elements from the various compressed

codestreams corresponding to the different views and depth maps are the best to sat-

isfy the client requests. Another key feature is that client and server are completely

asynchronous. After making a request the client will not stop but will continue per-

forming the rendering with the available data, and will improve it as soon as more data

is received from the server.

Standard JPIP servers works in epochs, every one corresponding to a time inter-

val usually between 1
2

and 1 second. The amount of data that can be transmitted in

each epoch depends on the available bandwidth. For every epoch, after receiving the

requests from the client (usually corresponding to a region of the image at a certain res-

olution) the optimization procedure assigns a priority to every available packet based

on rate-distortion computations and then builds a list of the packets that need to be sent

to the client in that epoch. In our approach we introduce an external module (the server
policy block in Figure 3.11) that receives from the JPIP server the view parameters and

compute the priority for the available depth and texture packets. This module is based

on an optimization algorithm, described in Chapter 6, that selects which contribution

from the scalably compressed representations of the different views and depth maps

3.4 Client overview 47

will be transmitted. The decision is made on the basis of the required viewpoint, of

the already transmitted information and of distortion information on the compressed

data. After completing the computation the priorities are sent back to the JPIP server

that can use them to build the list of packets that will be transmitted in the current

epoch. The data is then transmitted incrementally in the same way we do for standard

JPEG2000 images.

Value Request type Description Parameters
1 KDU JPIP 3D WINDOW Update the projection matrix 16 floating point values

2 KDU JPIP 3D UPDATE Update the projection matrix and 16 floating point values

the packet transmission choices

Table 3.4: Request types for JP3D context

Rendering CacheJPIP Cache

Client Policy
(sample selection system)

Compressed data

View parameters

Images and
depth maps

JPEG2000
compressed data

View parameters

View
parameters

Screen

Images and
depth mapsS

erver

3D Rendering
Engine

User
Interface

JPIP
Client

Figure 3.13: Overview of the client application

3.4 Client overview
The client application’s target is to exploit all the image and depth information received

from the server to show the rendering of the required views to the user. Figure 3.13

shows the architecture of the client. The user interface shown to the user is the same

of a standard 3D browser. Like many other 3D viewers there is a rendering window

showing the scene and the user can freely explore the scene using the mouse or the

keyboard. He can look at the 3D world from any viewpoint and viewing direction and

perform enlargements. The current implementation of this module exploits hardware

accelerated rendering and is based on the OpenGL and Glut1 libraries. After the user

1 The Glut library [49] is an interface between the OpenGL graphics library and the window manager

of the operating system (it is available both for Unix/Linux and Windows). It allows to build simple

Graphical User Interfaces for 3D applications that exploits the OpenGL hardware accelerated rendering.

48 Chapter 3. A new approach to remote 3D visualization

requires a particular viewpoint and orientation2 the parameters of the view are sent

both to the main application module (the “3D Rendering Engine” block) in Figure

3.13 and to the JPIP client. The first one then starts the rendering procedure using

the data contained in the cache. The complete procedure will be described in Chapter

4, however the basic idea is to use the available geometry information to warp all the

available views to the required viewpoint and then combine the various renderings to-

gether. The fusion of the different renderings is handled by the “Client Policy” module,

that selects the source warped view for every element in the final rendered image. This

module will also be described in detail in Chapter 4. At the same time the view param-

eters are also communicated to the JPIP client that will send a request to the server of

the type described in Section 3.3. The server will then compute the packet that need

to be transmitted and start sending them to the client that will put the data into the

cache. By looking at Figure 3.13 it is possible to see that the cache is divided in two

parts: the “JPIP Cache”holds JPEG2000 compressed data-bins, while the “Rendering

Cache”holds uncompressed images and depth maps. This allows to find a trade-off be-

tween the performances (the data in the Rendering Cache has a very fast access time3)

and the memory usage (compressed data in the JPIP Cache use much less space). The

JPIP client will decompress on the fly the required information in its cache as soon as

the rendering engine asks for data that is not available in the Rendering Cache.

A fundamental aspect of the client framework is that the rendering and transmission

module are asynchronous. When the user asks for a view the rendering module will

immediately display it using the data already available in the cache without waiting

for more information from the server. At the same time a new request is made to the

server and as soon as more data becomes available in the cache the rendering module

can progressively improve the image quality. This approach permits to offer to the

user an interactive browsing experience that is not affected from network delay or

bandwidth congestion issues that usually represent a huge problem in sytems based on

rendered views transmission ([34, 36, 28]).

2In the final completely optimized version of the system this should happen continuously while the

user is exploring the scene, in the current implementation when the user changes viewpoint the client

shows a temporary rendering and then start the view synthesis procedure that still requires a few seconds.
3The data in the Rendering Cache can also be stored directly into the graphics card memory to be

readily used in the hardware accelerated warping operations.

Chapter 4

Distortion-sensitive view synthesis

In the description of the general architecture of our remote visualization system we

outlined two main issues: how to combine the information from the different views

into the required rendering at client side and the selection of the information to be

transmitted. We start from the first issue and then we will exploit the solution we

found to develop the transmission strategy at server side. In this chapter we assume

we already have a description of the geometry available at client side and we focus

on how the required rendering can be reconstructed from the different views of the

scene received from the server. The reconstruction of geometry information will be

the subject of the next chapter.

���
�����	
�

��� ���

������
����������
����������
�������

���
�
	����
�

���

Figure 4.1: Reconstruction of the required rendering from the different views and
depth information.

Our view reconstruction procedure is made of 4 steps (see Figure 4.1): In the first

every view received from the server is warped to the required viewpoint using the ge-

ometry information, thus obtaining a set of predictions of the required rendering. Then

all the warped views are decomposed using the wavelet transform. In the following

50 Chapter 4. Distortion-sensitive view synthesis

step the samples that will be used in the final rendering are selected from the differ-

ent subbands of the decompositions of the various warped images on the basis of a

minimum distortion policy. Finally wavelet synthesis will be applied to the selected

samples to obtain the final rendered view.

Section 4.1 describes how the required view can be predicted by warping an avail-

able view to the required viewpoint, then we will introduce a multi-resolution stitching

algorithm based on the wavelet transform that can be used to combine the different

warpings. The minimum distortion framework used to select the samples will be de-

scribed in the last part of the chapter. For the rest of the chapter we will assume that

the client has already received a set of original view images V i0 , V i1 , V i2 , ... and a de-

scription of the surface geometry G, represented as a triangular mesh. Later, we will

see how to replace the geometry with a synthesized depth map obtained from the depth

information received from the server. We will also denote with V ∗ the view required

by the user.

4.1 Warping of a single view

This section describes the process of rendering the required view V ∗ from a single

original view image, V i and the geometry description, G. Let us call Δn the n-th

triangle of the mesh G. By projecting the nodes of the mesh onto the image planes

corresponding to V ∗ and V i, we obtain two sets of corresponding triangles, denoted

{Δ∗
n} and {Δi

n}, respectively (see Figure 4.2).

*
nΔ

i
nΔ

iV *V

Figure 4.2: Surface mesh projected onto an original view image V i and onto V ∗.

Entering in more detail view V ∗ is associated to a projection matrix P ∗ that maps

the vertex Xi in the 3D space to the point Ji on the 2D image plane of V ∗, according

to the following relationship in homogeneous coordinates [50]:[
wJi

w

]
= P ∗

[
Xi

1

]
(4.1)

4.1 Warping of a single view 51

affine warping

V
V

i

*

Δ
Δ*

i

n
n

G

Δ
n

i,nT

Figure 4.3: Rendering V ∗ from geometry G and view V i

P ∗ has the structure of a standard projection matrix, given by the multiplication of an

intrinsic part containing the camera parameters with a rototranslation matrix:

P ∗ =

⎡⎣ fx s cx 0
0 fy cy 0
0 0 1 0

⎤⎦[RT t
0T

3 1

]
(4.2)

where R and t are the rotation matrix and translation vector of the user reference sys-

tem, with respect to the world reference system. Entries fx, fy, cx, cy and s are the

intrinsic parameters of the virtual camera used by the client in order to render the

world to the user. Let us denote by P i the projection matrix associated with view V i,

Δ∗
n and Δi

n can be obtained by by projecting the same triangle Δn of the 3D mesh G
on V ∗ by P ∗ and on V i by P i (Figure 4.3).

It is important to underline that only some of the triangles of the mesh are visible in

both the images. That is because some of the triangles could fall outside of the image

area in one of the two images, others could be facing backwards and some could be

hidden by other elements in the scene. Of course some of the projected triangles may

be hidden in one image, but not in the other. If Δ∗
n is hidden, Δi

n is not involved in

rendering, while if Δi
n is hidden, Δ∗

n cannot be rendered from V i and a “hole” will

remain in the part of V ∗ corresponding to Δ∗
n. Some of the triangles can be partially

hidden, but this issue can be avoided by choosing a suitably fine mesh. Equivalently, it

is sufficient to subdivide (i.e., remesh) those triangles which straddle object boundaries

in V ∗ or V i. We introduce the notation Oi for the set of indexes n such that Δi
n is

52 Chapter 4. Distortion-sensitive view synthesis

visible in V i – i.e.,

Oi =
{
n | Δi

n is observable in V i
}

; and

O∗ = {n | Δ∗
n is observable in V ∗} .

Excluding the holes, all the visible triangles Δ∗
n, n ∈ O∗, are rendered from Δi

n by

affine warping using the texture mapping technique. This step can be performed very

fast exploiting the 3D hardware acceleration features of the graphics card of modern

desktop computers. We denote the complete warping operation from V i to V ∗ by

piecewise affine mapping as V ∗ = W i (V i). More formally, for every triangle Δn, we

callW i
n the single linear affine image warping operator which aligns the imagery in V i

over Δi
n with that in V ∗ over Δi

n. Every different triangle has a different orientation

in the 3D space and a differentW i
n operator. Also, let V |Δ denote the image obtained

by restricting V to the support of Δ, i.e. leaving it unmodified in the region of triangle

Δn and setting its samples to 0 elsewhere. Then the warping operation W i is defined

by equation 4.3

V ∗ = W i
(
V i
)

=
∑

n∈Oi∩O∗
W i

n

(
V i
)∣∣

Δ∗
n

(4.3)

It is important to underline that even if in theory the operatorW i
n depends only on

the pixels inside the triangle Δi
n, a good implementation of the affine texture mapping

procedure requires a suitable interpolation filter. Several different interpolation filters

can be used, from the simple bilinear interpolation filter to more complex cubic or

spline filters. The size of the kernel depends on the chosen filter and for some of

them (such as spline interpolators of quadratic or higher order) can be even infinite. A

consequence of this is that the samples of the warped triangle depend also on pixels

outside the source triangle and require us to regard W i
n as an operation on the entire

domain of V i, taking the result only over Δ∗
n. As previously said not all the triangles

are visible in both the images and the individual affine warping operatorsW i
n are only

defined for the pair of triangles visible on both images. These triangles are those

whose index n belong to both Oi and O∗. For this reason some regions of V ∗ are

undefined because they are not visible in both the views. We divided the undefined

regions (“holes”) of V ∗ into two groups:

1. “Exterior holes” consists of those pixels in the support of V ∗ (typically a rect-

angular image) which fall outside the silhouette of the object as perceived from

view V ∗. This kind of holes is usually common when the scene is an object

placed in front of a background that is not part of the scene. Instead in the case

of the inspection of virtual places (e.g. a room) the scene usually covers all the

view and there are no exterior holes. These holes represent samples that are not

part of the scene and do not represent a big issue.

We denote with

R∗ =
⋃

n∈O∗
Δ∗

n,

4.1 Warping of a single view 53

the region of support of the object in view V ∗ (the “exterior holes” are so repre-

sented by the set of all samples that do not belong toR∗, (R∗)c).

2. “Interior holes” instead represent triangles that are visible in V ∗, but not in V i.

Using the previous notation this is the portion of R∗ which is not visible in V i

and cannot be predicted from the available view. More formally they are defined

by the region

Hi→∗ =
⋃

n∈O∗\Oi

Δ∗
n.

a) b) c)

Figure 4.4: Warping example: a) Available view, b) Prediction, c)Required view

Figure 4.4b shows an example of the warping procedure. It shows the prediction of

image 4.4c using the view in Figure 4.4a. From the figure is clear that only the part of

the object that is visible in both images can be predicted. The triangles that are visible

in the required view but not in the available one (the “interior holes”) are shown in

yellow, while the region outside the object (“exterior holes”) is black.

A final remark is that affine warping does not exactly extend the behaviour of a

perspective imaging model into the interior of the projected surface triangles Δ∗
n. The

nodes of the mesh are reprojected using the correct perspective model and so are in

the “right” position, while the samples inside each triangle are then calculated using

texture mapping, that is based on an affine warping and do not fall exactly in the same

position as if they were reprojected one after the other using the perspective model1.

However, this error can be made arbitrarily small by reducing the size of the triangles.

A suitable remeshing is thus sufficient to solve the inaccuracy in our formulation due

to the visibility and affine warping issues.

The proposed approach can be implemented in real systems by a standard warping

procedure. The first step consists in calculating the perspective matrices that map the

1Such an approach is much slower than common texture mapping techniques like the scanline algo-

rithm

54 Chapter 4. Distortion-sensitive view synthesis

geometry nodes on the two views. The following one is to map the nodes using the

new perspective matrices and the final operation is to warp all the samples using an

optimized texture mapping algorithm (algorithms for fast warping of images are well

known in computer graphics [51]). To obtain faster performance a good solution is

to apply the source view V i as a texture to the available surface description and then

exploit the hardware acceleration features of the graphic card to perform the rendering

from the point of view associated to V ∗.

4.2 Warping from multiple views
As shown in the previous section in most cases a single view is not enough to obtain

the correct rendering from a different viewpoint and it is necessary to combine the in-

formation from the reprojection of multiple original view images. To correctly exploit

the information from multiple warpings two fundamental issue must be solved:

• Multiple warped views cover a bigger set of triangles in V ∗ but at the same time

some triangles can be visible in different available views. A criterion to blend

the information from different source views inside each triangle is needed.

• In theory the warping of the different views should be perfectly aligned but un-

certainty in the geometry due to the acquisition procedure or to compression

together with other issues like different lighting conditions or reflections can

cause artefacts in the boundary between triangles taken from different views.

The simplest way to combine the information from multiple original view images,

V i0 , V i1 , ..., is to simply average the results obtained by mapping each of them onto

the desired view. Equation 4.4 gives a formal representation of this procedure:

V ∗ =
∑

n∈(∪iOi)∩O∗

1

N(n)

∑
k

W ik
n

(
V ik
)

(4.4)

Where N(n) represents the number of views in which the nth triangle is visible

and we setW ik
n (V ik) to zero in the triangles not visible in V ik .

Unfortunately, as previously pointed out any imperfections in the surface geometry

representation will produce misalignment amongst the separate renderings W i (V i),
and averaging tends to blur high frequency spatial features. The simple average shows

no preference for one possible rendering over another, a weighted one can provide

better results but images still remain blurry, specially in the case of unreliable geometry

(see Figure 4.5a).

Another solution is to select a single most appropriate original view image for every

triangle. We refer to this as “stitching”. We will denote with i∗n the “best stitching

source” for the triangle Δn. The final synthesized view will be constructed by just

placing side by side all the triangles rendered from the different best stitching sources,

according to

V ∗ =
∑

n∈(∪iOi)∩O∗
W i∗n

n

(
V i∗n
)∣∣

Δ∗
n

=
∑
n∈O∗

W i∗n
(
V i∗n
)∣∣

Δ∗
n

(4.5)

4.2 Warping from multiple views 55

Of course, i∗n must have the property that n ∈ Oi∗n so that Δ
i∗n
n is visible in V i∗n . Also,

note that the “interior holes” in V ∗ are now restricted to the portion ofR∗ which is not

visible from any of the available views V i, i.e.,

H∗ =
⋂
i

Hi→∗ =
⋃

n∈O∗\(∪iOi)

Δ∗
n

We will deal with the problem of how to select the best stitching source for each

triangle in the next section. Figure 4.5b shows a rendering example obtained with this

approach. It allows to avoid the blurring problem but it tends to produce visible discon-

tinuities at the boundaries between adjacent triangles rendered from different original

source views. This is due to the uncertainty in the geometry description that cause

misalignment between samples rendered from different sources and also to illuminant-

dependent shading effects. A possible extension of this approach is to perform some

averaging in the vicinity of boundaries of triangles taken from different views, for ex-

ample by forming a weighted average of the various candidates,W i (V i), in the vicin-

ity of stitching boundaries. However this approach reintroduces the blurring problem

in the high frequency due to averaging; moreover, it is unclear how much averaging is

required to eliminate visible artefacts.

a) b) c)

Figure 4.5: Combining multiple views: a) Averaging, b) Stitching, c)Multi-resolution
stitching based on DWT

A possible solution to this dilemma, is to perform the stitching within a multi-

resolution framework [52] such as the Laplacian pyramid or a Discrete Wavelet Trans-

form (DWT). These approaches perform much more smoothing in the lower spatial

frequency components than in the higher ones (the highest frequency details usually

are not smoothed at all). Figure 4.5c shows how these approaches allows to avoid

the discontinuities at the boundaries while passing higher frequency content unaltered,

thus avoiding to destroy high frequency details.

In the present work we decided to use a stitching procedure based on the Discrete

Wavelet Transform (DWT). One of the reason for such a choice is that our original

view images are compressed using JPEG2000. This compression standard is based on

56 Chapter 4. Distortion-sensitive view synthesis

Warping

DWT Analysis

V i0 V i1 V in V *

DWT Synthesis

0
* Δ

 Δ n
n

Sample selection
 policy

...

Figure 4.6: Stitching in the DWT domain

4.2 Warping from multiple views 57

LH2

LL2 HL2

LH1 HH1

HL1

HH2

LL1

LL0

image

S

S
Sy

nt
he

si
s f

ro
m

 su
bb

an
ds

R2

R1

R0

LS

LS

HS

HS

Sy
nt

he
si

s v
ia

 re
so

lu
tio

n
co

m
po

ne
nt

s

≡

≡

Figure 4.7: Decomposition of the image with a 2 level DWT

the DWT (see Section 2.4) and stores a compressed version of the coefficient of the

wavelet decomposition of the image.

Figure 4.6 shows an overview of our multi-resolution stitching framework: in the

proposed approach we will firstly reproject every original view image thus creating

a set of warped images W ik (V ik) , k = 0, 1, 2... (where k represent the index of the

source view). Then we will stitch all these warped images together using a DWT-

based multi-resolution approach. To simplify the notation from this point we will call

by V i→∗ � W i (V i) the reprojection of V i on the target viewpoint. After the warping

we first decompose each V i→∗ using the wavelet transform. We use a D level DWT

decomposition based on the 9/7 Daubechies filter. Every resolution level d can be

decomposed into a half resolution image LLd+1 and a set of high frequency subbands

HLd+1, LHd+1 and HHd+1. After recursively applying the DWT d times, every image

is decomposed into a low resolution base image LLi→∗
D and a collection of high-pass

subbands HLi→∗
d , LHi→∗

d and HHi→∗
d , as shown in Figure 4.7.

To reconstruct the image V i→∗ ≡LLi→∗
0 we can recursively apply the DWT syn-

thesis operator S. Exploiting the fact that S is a linear operator, every level can be

expressed as:

LLd = S (LLd+1, HLd+1, LHd+1, HHd+1)

= S (LLd+1,0,0,0) + S (0, HLd+1, LHd+1, HHd+1)

= SL (LLd+1) + SH (HLd+1, LHd+1, HHd+1)︸ ︷︷ ︸
Rd

58 Chapter 4. Distortion-sensitive view synthesis

This decomposition divides the operations required for every single stage of the

DWT synthesis into two groups, the low pass portion SL, and the high pass portion SH.

We also represent with Rd the “detail” image formed from the three high-pass subbands

at decomposition level d + 1. We also write RD for LLD so that Ri→∗
0 , Ri→∗

1 , ...,

Ri→∗
D together represent the complete set of resolution components for warped image

V i→∗. The idea is now to take the samples in the different subbands of every resolution

level from the different decomposition of the warped views according to the choice

we made for every triangle. The projection of the mesh on the warped image V i→∗

can be mapped to the various subband by simply scaling it by 2d. Every triangle Δ∗
n

is so represented in the subbands at level d by its scaled version Δ∗
n,d, reduced in size

by factor 2d. In the simple stitching algorithm we forced every triangle to be taken

from a single view, but in this multi-resolution framework we have more freedom and

we can take a triangle from a certain view in one subband and from a different one

in another. We will use the notation i∗n,d for the different stitching sources of every

triangle in every subband. This property is very useful because, as will become more

clear in the following discussion, one source image might provide high quality details

at some resolution levels but not at others, depending upon compression noise and the

view orientation. Even if a different choice is theoretically possible for every single

subband, in this work we will take each triangle in the three high frequency subbands

HLd, LHd and HHd at the same level from the same source view to avoid wavelet-

related artefacts in the synthesized views. After selecting the source view for every

sample in every subband the final view can be reconstructed by recursively applying

the wavelet synthesis operator.

There are two possible options for the stitching of the data in a wavelet-based multi-

resolution framework. The first, shown in Figure 4.8 for the case of two views consists

in stitching in each subband the samples from the different source views and then

perform the high frequency synthesis to get the resolution components. The various

resolution component can be then synthesized up into the final image.

The second option, depicted in Figure 4.9, instead consists in synthesizing the three

high frequency subbands into the corresponding resolution component independently

for each source image. For every resolution component we obtain a different represen-

tation for each source view and then we can stitch together the data inside the resolution

components (this is possible because we forced the same choices on all the three high

frequency subbands at the same resolution). The stitched resolution components can

then be synthesized up into the final image. Theoretically the second approach should

avoid some artefacts related to misalignements in the high frequencies, but practical

tests have shown only limited difference between the two approaches.

More formally the second approach proceeds by separately stitching each resolu-

tion component to form:

R∗d =
∑
n∈O∗

R
i∗n,d→∗
d

∣∣∣
Δ∗

n,d

, d = 0, 1, 2, . . . , D (4.6)

A big issue of this approach is that the formulation provided in equation (4.6)

is not always able to work properly in proximity of “holes” in the various warped

4.2 Warping from multiple views 59

�������		
�

�

�

��

		

���		�

�

�

����	�	��

�������������

Figure 4.8: Multi-resolution stitching in the wavelet subbands

�������		
�

�

�

��

		

���		�

�

�

����	�	��

�

�

��

		

���		�

����	�	��

�

��

�

���������������

��������������

�������������

Figure 4.9: Multi-resolution stitching in the resolution components

60 Chapter 4. Distortion-sensitive view synthesis

views V i→∗. The key problem is that the DWT transform involves overlapping basis

functions, and resolution component samples which lie fully within a visible triangle

may be influenced by the invalid data associated with holes. How to handle this issue

will be the subject of Section 4.5.

4.3 Distortion-based selection of the stitching sources

The main issue in combining the information from the different views at client side is

how to select the source view for the various triangles in the different subbands. In

[10] we introduced a framework to estimate the distortion in the various subbands of

the rendered views. A more refined version of the framework is presented in [11], in

which we also removed the assumption that the geometry is represented by a triangular

mesh and we estimate the distortion for every sample. Three main sources of distortion

are taken into account, the quantization distortion due to compression in the source

images, the translational error in the warped views due to geometry uncertainty and

the color difference between corresponding pixels in different views due to lighting

and reflection issues. An additional distortion term has also been included to take

into account holes-related issues. The estimated distortion will be used to select the

source views for the various samples in the wavelet subbands. In most situations we

will simply choose for every sample the source image with the lower distortion, but in

some particular cases (specially to handle “holes” related issues) a weighted average

of more sources is also used.

4.4 Accounting for image compression distortion

The first source of distortion taken into account is the error introduced by lossy com-

pression of the views. It is important to recall that in the proposed system the views

are scalably compressed and progressively transmitted, so the compression distortion

for a certain view continuously change. Just after moving to a new viewpoint, when

only a small amount of data has probably been transmitted for a new view close to

the required viewpoint, it can also be very high. We compressed all the images in

JPEG2000, that performs the same wavelet decomposition we have used for the stitch-

ing and then quantize the subband samples. At server side it is possible to compare the

DWT samples with the quantized version after compression and get the exact quanti-

zation distortion for every sample. If we apply the wavelet synthesis to reconstruct the

image, the quantization error in the reconstructed view can be expressed as a function

of the errors in the different subbands:

δV i [n] =
∑

b

∑
k

δBi
b [k] · Sb

k [n] (4.7)

In equation (4.7) Bi
b is subband b from image V i, δBi

b [k] is the error in the kth

sample of this subband and Sb
k is the synthesis basis vector (itself an image) for that

4.4 Accounting for image compression distortion 61

sample2.

The distortion for every sample can be easily computed and stored in a database

at server side. Unfortunately storing the distortion for every sample in every subband

of every view for each quality layers (in the current implementation there are 7 of

them) leads to huge databases. In the mesh-based approach we are describing now a

good solution is to store the distortion for every triangle, in order to match the fact that

choices are made on the triangles. Other possible solutions, that we will use later when

we will move to the depth map based representation of the geometry, are to store the

distortion for every squared block of pixels (in our experimental tests we used 8x8 and

32x32 blocks) or for every codeblock of the JPEG2000 compressed image3.

The transmission of the distortion information to the client is not a good solution

because it introduces a huge overhead in the amount of transmitted data. This issue can

be partially solved by calculating the distortion on very large blocks, but in this way

the distortion values we use could be not too accurate. A better solution is to estimate

the distortion directly from the compressed image using the method described in [53].

This technique allows to obtain a reasonable estimate of the distortion (usually with an

error smaller than 3 db) directly from the JPEG2000 compressed datastream with the

aid of just a single extra parameter, provided globally for each subband.

4.4.1 Propagation of the distortion through DWT synthesis, warp-
ing and DWT analysis

After getting the distortion in the source images, the next step is to understand how the

distortion in the subbands of the source images is mapped to the warped views through

the DWT synthesis, the affine warping and the DWT analysis of the warped views.

The quantization error at location p in resolution component Ri→∗
d after the warp-

ing and the multi-resolution analysis is:

δRi→∗
d [p] =

〈W i
(
δV i

)
, Ad

p

〉
=
∑

b

∑
k

δBi
b [k] · 〈W i

(
Sb

k

)
, Ad

p

〉
(4.8)

where Ad
p is the analysis basis vector (itself an image) associated with that sample,

and 〈·, ·〉 signifies the inner product between two images. As shown in Figure 4.10,

an important observation is that the warping operation can spread out the distortion in

a certain subband to all the others (for example a rotation can move distortion energy

between the 3 high frequency bands HL, LH and HH and an enlargement can spread

the distortion through different resolution levels).

To calculate the total quantization error energy inside a triangle Δ∗
n,d in resolution

component Ri→∗
d we can just sum up the error corresponding to the samples that fall

into its region of support:

2We use vectors such as k = [k1, k2] and n = [n1, n2] to denote 2D coordinates.
3This last solution will be useful later in exploiting this framework for the server policy considering

that the server must always transmit entire codeblocks to the client.

62 Chapter 4. Distortion-sensitive view synthesis

V i (subbands) V i

S W

(V)
iW i

A

A ((V)
iW i)

Distortion Dn,b Dn,b d
i i

 b d
n

*

n n

W
|Δ |∗

n,b

|Δ |n,b
i

Figure 4.10: Propagation of the distortion

Di→∗
n,d =

∑
p∈Δ∗

n,d

∣∣δRi→∗
d [p]

∣∣2 (4.9)

By substituting equation (4.8) into equation (4.9) we obtain:

Di→∗
n,d =

∑
p∈Δ∗

n,d

⎛⎝∣∣∣∣∣∑
b

∑
k

δBi
b [k] · 〈W i

(
Sb

k

)
, Ad

p

〉∣∣∣∣∣
2
⎞⎠ (4.10)

A very common assumption in the distortion-directed decision literature is that the

individual subband quantization errors δBi
b [k] are approximately uncorrelated. With

this assumption all the cross-terms of the form
∑

b1,b2

∑
k1,k2

δBi
b1

[k1]δB
i
b2

[k2] in the

quadratic expression evaluate to 0 and it is possible to rewrite the sum of equation

(4.10) as:

Di→∗
n,d ≈

∑
b

∑
p∈Δ∗

n,d

∑
k

∣∣δBi
b [k]

∣∣2 · 〈W i
(
Sb

k

)
, Ad

p

〉2
︸ ︷︷ ︸

Di→∗
n,b→d

, (4.11)

With the assumption of uncorrelated quantization error equation (4.11) can be taken

as a strict equality. Di→∗
n,b→d represent the fraction of the distortion in subband d of trian-

gle n warped to the viewpoint of V ∗ coming from subband b. Due to the decay of the

finite support operators in
〈W i(Sb

k), A
d
p

〉
, Di→∗

n,b→d depends principally on the distortion

contributions δBi
b [k] which are found inside Δi

n,b, the projection of Δi
n into subband

Bi
b. This allows us to make the simplifying approximation of a uniform quantization

error power over the entire subband. By defining with Di
n,b the distortion into subband

b of triangle n and by Δi
n,b the area of the triangle in subband b we can write:∣∣δBi

b [k]
∣∣2 = Di

n,b/
∣∣Δi

n,b

∣∣ (4.12)

With the uniform error power assumption, by substituting (4.12) into the expression

for Di→∗
n,b→d we obtain

4.4 Accounting for image compression distortion 63

Di→∗
n,b→d =

Di
n,b∣∣Δi
n,b

∣∣ · ∑
p∈Δ∗

n,d

∑
k

〈W i
(
Sb

k

)
, Ad

p

〉2
≈ Di

n,b ·
∣∣Δ∗

n,d

∣∣∣∣Δi
n,b

∣∣ ·W n
b→d (4.13)

Here, W n
b→d measures the average value of the expression

∑
k

〈W i
n

(
Sb

k

)
, Ad

p

〉2
over a range of indices p. This is reasonable, since Sb

k and Ad
p are both periodically

shift invariant and the single affine operator,W i
n, captures the behaviour ofW i locally

over the triangle in which we are interested.

From a practical viewpoint, the formulation of equation (4.13) enables us to use

a pre-computed table of weights, W n
b→d. This is very useful because the computation

of the distortion directly from equation (4.11) for every triangle requires too much

computational time to be feasible in a real-time system.

To understand how it is possible to build the table of weights, let us start from

taking into account the effects of the affine warping. An affine transformation is a

composition of 4 different operations: translation, rotation, scaling and shear. The

actual energy after DWT analysis and synthesis slightly depend on the position of the

samples in the image and in this context the effects of translation can be ignored with

only a small loss in the accuracy of the weight values.

Therefore we will consider affine transformations mapping (x1, y1) to (x2, y2) ac-

cording to the following expression:[
x2

y2

]
=

[
cos(α) − sin(α)
sin(α) cos(α)

] [
1 s
0 1

] [
c1 0
0 c2

] [
x1

y1

]
(4.14)

where α is the rotation angle; s is the shear factor and c1 and c2 are the scaling factors

in the direction of x1 and x2. The first step in the construction of the table is the quan-

tization of the affine parameters, in order to have a not too large number of possible

affinities.

Angle α can be linearly quantized in the range between 0 and π/2 exploiting the

symmetric properties of the wavelet transform to deal with angles of more than π/2: a

rotation of 90 degrees will swap the HL and LH subband and a 180 degrees one will

have no effect on the energy. The quantized α values for a Nα levels quantization are :

α =
π

2
∗ i

Nα

with i = 0...(Nα − 1)

Shear s usually is very close to zero because the reprojection operation usually

does not have a great impact on this parameter. It can be quantized using a cubic

approximation as:

s = Ks ∗ ((
2

Ns

)3 · (i− Ns

2
)3) with Ks constant and i = 0...Ns

Where the number of levels is Ns + 1. This expression returns a set of values in

the range from −Ks to Ks with a dense quantization around the 0 and a coarse one

64 Chapter 4. Distortion-sensitive view synthesis

Parameter Quantization

-4,0000

-3,0000

-2,0000

-1,0000

0,0000

1,0000

2,0000

3,0000

4,0000

5,0000

6,0000

7,0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Index

Rotation
Shear
Scale

Figure 4.11: Quantization of the affine parameters

for larger values (the purple line in the plot of Figure 4.11 shows the shear values for

Ks = 3 and Ns = 20). The shear factor in the most common affine warping operations

is very close to 0 and it is also possible to avoid considering it in the table or use a

very coarse quantization. Scaling factors c1 and c2 are frequently close to one, since

usually most surface triangles are quite parallel to the viewer. Therefore it makes sense

to sample c1 and c2 more densely near one (scaling quantization values are plotted in

green in Figure 4.11). We used a cubic expression similar to the previous one, but this

time centred around one:

c1 = (K1 · (2
N1

)3 · (N1

2
− i)3 + 1)−1 with i in the range 0...(

N1

2
− 1)

c1 = K1 · (2
N1

)3 · (i− N1

2
)3 + 1 with i in the range

N1

2
...N1

c2 = (K2 · (2
N2

)3 · (N2

2
− i)3 + 1)−1 with i in the range 0...(

N2

2
− 1)

c2 = K2 · (2
N2

)3 · (i− N2

2
)3 + 1 with i in the range

N2

2
...N2

Where K1 and K2 represent the maximum scale factor represented in x1 and x2

respectively and N1 and N2 is the number of quantization steps in the two components.

The scaling factors have a great impact on the energy in the various subbands and this

elements usually need a more precise quantization than the shear and rotation.

4.4 Accounting for image compression distortion 65

a) b) c) d)

Figure 4.12: Computation of W n
b→d: a) impulsive error in LL subband at level d = 4

b) result of synthesis c) result of warping d) result of analysis in the same subband.

a) b) c)

Figure 4.13: Computation of W n
b→d: a) White noise input in LL subband at level

d = 5 b) result of synthesis c) result of warping.

A practical way to compute W n
b→d is to place an impulsive signal4 in one of the

subbands and compute synthesis, warping and analysis in order to get W n
b→d. Figure

4.12 shows an example of this procedure: Figure 4.12a shows the 16x16 subband at

decomposition level 4 with a single sample at the center. After synthesis the sample

expands in a blob on the 256x256 complete image of Figure 4.12b. The result of

warping by an affine transformation are shown in Figure 4.12c. The result of the

analysis in the LL subband at level 4, is shown by the 16x16 image of 4.12d. Its

energy gives the value of the coefficient.

This approach does not offer fully satisfactory results. The position of the sample

affects the result of analysis and synthesis in DWT and the impulse model does not

match the shape of the quantization error in the subbands of real images. We switched

to a more accurate procedure: firstly we fill up the source subband with random white

noise (Figure4.13a) and we measure its energy ESubband. The reason for this is that

the white noise offers a better representation of the quantization error in the images.

Then we apply DWT synthesis, warping and DWT analysis (Figure 4.13b and 4.13c).

To calculate the coefficient value we use equation 4.15 :

W n
b→d = ERegion · ASubband

ARegion

· 1

ESubband

· c1c2 (4.15)

Where ERegion is the energy in a rectangular region close to the center of the sub-

4We put a value of 1 at the centre of the subbamd and set it to 0 elsewhere.

66 Chapter 4. Distortion-sensitive view synthesis

band, while ARegion and ASubband are the area of the region and of the subband respec-

tively. We take the energy in a region close to the centre to avoid boundary-related

artefacts and we scale by the ratio of the areas to compensate for the smaller size of

the region. We also multiply by the scale factor c1 · c2 to account to the enlargement of

the region with non-zero samples due to scaling. The coefficient is obviously the ratio

of the computed energy and the energy in the input subband ESubband. Experiments

showed that the weights calculated with this procedure give a good approximation of

the actual values given by (4.11).

To build the table is necessary to compute W n
b→d for every combination of the 4

affine warping parameters and input/output subbands. Using 7 resolution levels and

storing a 32 bit floating point representation of the coefficients for all the 4 subbands

in each level the size of the table is then given by:

D = 4 · 282 ·Nα ·Ns ·N1 ·N2 (4.16)

Nα Ns N1 N2 Size (MB)

20 21 21 21 554

14 4 20 20 67

10 10 10 10 30

10 1 20 20 12

Table 4.1: Quantized weights table size

This can lead to a very large table (see Table 4.1). The table is static and does

not need to be transmitted, but too large tables can increase dramatically the memory

usage of the application. The table corresponding to the quantized values in figure

4.11 requires 554 MB and is too large for practical purposes. By reducing by half the

precision of all the warping parameters we can build a much smaller 30 MB table, but

by taking into account the different impact of the 4 parameters on the subband energies

is possible to obtain a better trade-off between the size of the table and the coefficients

precision. For example it was experimentally verified that with Nα = 10 , Ns = 1
and N1 = N2 = 20 we can achieve a not too coarse approximation with just a 12 MB

table. Further investigation on how to reduce the table size by exploiting additional

symmetrical properties in the DWT or by decomposing the weights values in terms

depending on the different warping parameters is still going on.

4.4.2 Effects of extra-band energy
Before going on, it is helpful to develop some intuition concerning the expected be-

haviour of our distortion formulation. The 9/7 biorthogonal wavelet transform used

for our experiments is very nearly orthonormal, subject to appropriate normalization

of the subband samples. We can suppose that the synthesis and analysis kernels in

our transforms are mutually orthonormal, which must certainly be the case if our

multi-resolution transform is derived from the orthonormal DWT, following the proce-

dure outlined in the previous sub-section. Finally observe that the affine operator W i
n

4.4 Accounting for image compression distortion 67

stretches each Sb
k by an amount equal to the ratio of the area between the target and

source triangles |Δ∗
n| / |Δi

n|, amplifying its energy by “roughly” the same amount (we

will revisit this point shortly). From the orthonormality of the Ad
p, it follows that∑

d

∑
p

〈W i
n

(
Sb

k

)
, Ad

p

〉2
=
∥∥W i

n

(
Sb

k

)∥∥2
= |Δ∗

n| /
∣∣Δi

n

∣∣ , ∀k
Now W n

b→d is the average value of
∑

k

〈W i
n

(
Sb

k

)
, Ad

p

〉2
taken over p. It can be

shown that this is
∣∣Δi

n,b

∣∣ / ∣∣Δ∗
n,d

∣∣ times the average value of
∑

p

〈W i
n

(
Sb

k

)
, Ad

p

〉2
taken

over k:

W n
b→d =

∑
p

∑
k

〈W i
n

(
Sb

k

)
, Ad

p

〉2
|p| =

∣∣Δi
n,b

∣∣∣∣Δ∗
n,d

∣∣ ·
∑

k

∑
p

〈W i
n

(
Sb

k

)
, Ad

p

〉2
|k| (4.17)

By substituting (4.17) into equation (4.13) we can conclude that

∑
d

Di→∗
n,d =

∑
d

∑
b

Di
n,b ·

∣∣Δ∗
n,d

∣∣∣∣Δi
n,b

∣∣ ·W n
b→d

=
∑

b

Di
n,b

∑
d

∑
p

〈W i
n

(
Sb

k

)
, Ad

p

〉2
=
|Δ∗

n|
|Δi

n|
∑

b

Di
n,b (4.18)

At first glance, if we assume that the total distortion in the source triangle
∑

b Di
n,b

is roughly proportional to its area, |Δi
n|, from equation (4.18) we could guess that

the total distortion in the warped triangle
∑

d Di→∗
n,d should be roughly independent of

the affine operator W i
n. However, this first impression is wrong, since a couple of

important issues are missing from this picture.

The first important oversight in the above derivation is that W i
n must be a ban-

dlimited warping operator. In fact warping a spatially continuous image does indeed

amplify its energy directly in proportion to |Δ∗
n| / |Δi

n|. This property is valid also for

discrete images only when all spatial frequency components in the warped image can

still be represented. If |Δ∗
n| / |Δi

n| < 1, the ideal continuous warping operator nec-

essarily generates extra super-Nyquist spatial frequency components which must be

suppressed in the discrete equivalent to avoid aliasing. This means that source views

V i for which |Δ∗
n| / |Δi

n| < 1 should yield less distortion power, making them more

favourable selections for a single “best stitching source” , assuming that all the other

parameters all the same. This observation also reminds us that care must be taken when

warping both the real image samples and the synthesis basis images (for example in

the computation of the weights W n
b→d), not to simply resample the image with a fixed

interpolation function. A simple way to achieve the desired band-limiting behaviour is

to perform the warping operation at a higher resolution and then sub-sample the result,

using an appropriate anti-aliasing filter.

The second important oversight in the above derivation arises when the warp-

ing operation represented by W i
n is expanding the triangles in the source image, i.e.

68 Chapter 4. Distortion-sensitive view synthesis

LH2

LL2

HL2

LH1 HH1

HL1

HH2

LL0

Vi

LH0 HH0

HL0

synthesize analyze
iW

0 0

0

discard

sy
nt

he
si

ze

∗→iV

∗→i
1-R

∗→i
0R

∗→i
1R

∗→i
2R

0HL 0
W →

0LH 0
W →

0HH 0
W →

0HL1
W →

0LH 1
W →

0HH 1
W →

0HL 2
W →

0LH 2
W →

0HH 2
W →

0LL 2
W →

subband energies

distortion
dis

tor
tio

n
dis

tor
tio

n

Figure 4.14: Procedure for mapping both imagery and distortion information from
view V i to warped view V i→∗. Extra, hypothetical resolutions are shown lightly
shaded.

|Δ∗
n| / |Δi

n| > 1. In this case, the highest resolution components of V ∗ cannot be re-

covered at all, since they depend upon high frequency components that does not exist

in the source view. The absence of these components represents a form of additional

distortion, in addition to that arising from quantization noise in the compressed source

views. One way to take into account this effect is to include in the summation on

the right hand side of equation (4.18) subbands from a set of hypothetical resolutions

above the ones of the original images. These subbands are shown lightly shaded in

Figure 4.14, and we will refer to them as “extra resolutions”. The figure also shows

how the first issue described above may be addressed at the same time by performing

the warping procedure at the higher resolution and then simply discarding the extra

resolution components as a form of band-limited downsampling.

The main issue in the with the extra resolutions procedure is the estimation of the

source distortion Di
n,b in these hypothetical subbands. Since these subbands are miss-

ing in the source images, their distortions are identical to their energies Ei
n,b. A possible

way to obtain an estimate for these energies is to project each source image onto the

other in turn and take the maximum of the energy produced by these warpings. The

idea is that in some of the various views Δn should have a greater area and so more

information on the higher frequencies. This, of course, gives only a conservative esti-

mate of the energy in the extra resolutions. At client side this approach can be exploited

4.4 Accounting for image compression distortion 69

by projecting only the source images that are available at client side. By using only

the available data we could underestimate the energy in the extrabands. However the

energy is usually underestimate in the points where no available image is better aligned

with the surface than the one we are analyzing. In this case the underestimation has no

relevant impact on the distortion choices because there are not better views. If higher

resolution versions of the source images than the ones used in the remote visualization

are available, another obvious solution (only at server side) is to directly compute the

extra resolution energy from them.

The practical consequence of these two effects is that original source views for

which |Δ∗
n| / |Δi

n| is smaller, are always preferred over those for which |Δ∗
n| / |Δi

n|
is larger, assuming that the source compression noise power is similar. This agrees

with our intuition, that the source view whose focal plane is most parallel to the scene

surface should provide the most information about its texture; this is the view for which

the transformationW i is most contractive.

4.4.3 Distortion estimation with depth maps

a) b) c)

Figure 4.15: Geometry representation: a) Triangular mesh, b) Depth map c) Geome-
try reconstructed from depth map

In the previous sections we have been working with a complete description of the

geometry G, in terms of triangular mesh elements. In the proposed approach however

the only available description of the geometry is a set of depth maps. However to re-

project the samples from the various views V ik to view V ∗ it is sufficient to hold a

depth map Z∗ [n], identifying the depth of each location n in V ∗. The depth informa-

tion from Z∗ allows to reproject all the pixels of V ∗ to the various views. A practical

issue is that depth information is available only for the set of a available views at server

side that usually does not include the required view V ∗. How to exploit the information

from the various available depth maps to reconstruct depth from the target viewpoint

will be the subject of Chapter 5. We will see how the problem of estimating depth from

view V ∗ can be considered as an analogous problem to that of synthesizing texture in-

formation. It is also possible to map the samples from the source views to V ∗ but this

will require to have the depth information for every source view and introduces some

sampling issues. If a complete mesh is available we can of course derive the depth map

from it.

Shifting from a triangular mesh to depth maps has some important advantages.

Firstly it allows to transmit only the part of the geometry that is relevant for the re-

70 Chapter 4. Distortion-sensitive view synthesis

quired viewpoint, by transmitting only the closest depthmaps and also by exploiting

the scalable image compression features of JPEG2000 to transmit only the required

part of every single depth map. This is particularly useful in remote visualization of

very complex scenes where we cannot afford to transmit a complete representation of

the scene’s geometry. Secondly, by moving to depth maps we can treat each pixel (or

resolution component sample) separately. This permits to avoid the issues correlated to

partially hidden triangles and to affine warping without the need to perform a remesh-

ing. This allows also stitching decisions to follow meaningful scene features rather

than being bounded by artificial mesh structures. All these problems can be theoreti-

cally solved by performing a fine remeshing to increase the number of triangles in the

scene, but using too many triangles will have a severe impact on the performance of

the system.

To adjust the previous formulation from the triangular mesh representation to the

sample-based one it is necessary to take the limit of the previous equations as triangles

Δ∗
n and Δi

n becomes arbitrarily small.

In the sample-based framework the multi-resolution stitching procedure now al-

lows to select a source view for every single sample5. In this way the source selection

is more flexible and is not anymore forced to follow the boundaries between trian-

gles. The subband stitching formulation, previously given by equation (4.6) can be

now expressed as:

R∗d [p] =

{
R

i∗d[p]→∗
d [p] 2dp ∈ R∗

0 2dp /∈ R∗ , d = 0, 1, 2, . . . , D; (4.19)

The warping operatorW i becomes a general geometric warping operator, that now

has a value for every pixel in the image, instead of a single value for all the pixels

in each triangle. It must be computed from the depth information in Z∗. A possible

way of calculating the warping operator for a certain point p , W i(p) it is to take the

normal to the surface in that point (that can be easily computed from the depth map),

and generate a “virtual” triangle centered at p and with the orientation given by the

surface normal. The three triangle vertexes can then be reprojected to V ∗ and finally

we can compute the warping parameters.

If we divide both terms in equation (4.13) by Δ∗
n,d we obtain:

Di→∗
n,b→d∣∣Δ∗

n,d

∣∣ ≈ Di
n,b∣∣Δi
n,b

∣∣ ·W n
b→d, (4.20)

The left hand side of equation (4.20) represent the average per-sample distortion

over the extent of the nth triangle. The meaning of equation (4.20) is that inside Δn

the corresponding weight W n
b→d maps per-sample distortion from source subband Bi

b

in view V i to the multi-resolution component Rd on view V ∗.
Moving to the depth map based representation the weights can so be used as point-

wise multipliers. We will also represent with (W i
b→d)

−1
the operator which maps lo-

cations p in the warped resolution component Rd, back to the corresponding location

5In practical implementations to achieve better performance and memory savings by computing the

distortion and making the choices on small blocks of samples instead of single pixels.

4.4 Accounting for image compression distortion 71

k = (W i
b→d)

−1
(p) in subband Bi

b of view V i (in other words is the operator who does

the inverse mapping of the one provided by W i
b→d). By replacing the weights and the

distortion values associated with the triangles with the per-sample ones equation (4.13)

can be rewritten as:

Di→∗
d [p] =

∑
b

Di→∗
b→d[p] =

∑
b

Wb→d [p] ·Di
b

[(W i
b→d

)−1
(p)
]
. (4.21)

It is important to underline that the source distortion must be taken from the sample

of the source view that have been mapped to the considered sample p, that is repre-

sented by (W i
b→d)

−1
(p).

As in the case of the triangular mesh after computing the distortion for every sample

we can choose as the best stitching source the one which minimizes the distortion. The

best source at location p in R∗d, i∗d[p], is so given by:

i∗d[p] = argmin
i

Di→∗
d [p]

There are, however, some obvious problems in using equation (4.21) to determine

Di→∗
d [p] directly. The first problem is that (W i

b→d)
−1

(p) will generally reproject sam-

ple p in the middle between some available distortion samples Di
b[k] in subband Bi

b.

This problem can be solved by simply selecting the sample closest to the computed po-

sition or by using some interpolation techniques such the bilinear filtering to average

the value of the closest distortion samples.

The second is that our weighting formulation was developed based upon the as-

sumption that the triangular mesh elements are large compared with the support of〈W i
n

(
Sb

k

)
, Ad

p

〉
– this is certainly not true when we reduce all of the triangular mesh

elements to individual samples.

In the practical implementation to reduce the memory usage and stabilize the re-

sults we do not use the distortion for every simple sample but we divide the image in a

set of blocks and we store a single value for every block, that is obviously the average

of the distortion value of samples inside the block. That solution also reduce the impact

of both problems, the first because it is quite likely that the reprojected point will fall

inside one of the blocks and the second because the size of the block is of course larger

than a single sample. To reduce further the impact of these issues it is also possible to

apply a low-pass smoothing filter to the distortion estimates Di
b[k] before using them

to compute equation (4.21). After applying the low-pass filter, specially if we are also

using the distortion averaged on the blocks we can use nearest neighbour interpolation

(i.e., just choose the sample or block closer to the reprojected point) in connection with

(W i
b→d)

−1
(p) without any loss of fidelity.

To match the compressed data representation it is possible to compute the averaged

distortion not on fixed square blocks but on the regions corresponding to the code-

blocks used for JPEG2000 compression. The main difference is that by dividing the

image in a set of block and repeating the same division on all the subbands we have

the same number of blocks in all the subbands, with smaller blocks in low-frequency

subband. Instead the JPEG2000 blocks have the same size in all the subbands, so there

72 Chapter 4. Distortion-sensitive view synthesis

� �

������������	
���������	�� �������������	
����������������
����

�

�

�

Figure 4.16: Division of the various subbands in squared blocks and in JPEG2000
codeblocks

are many of them in the higher subband and few (or just one) in the low frequency

bands (see Figure 4.16).

Using the blocks the distortion field Di
b[k] is thus already likely to be varying only

slowly, and further low-pass filtering has little impact. Even if it seems that the block

subdivision and the low-pass filtering will introduce an approximation that can reduce

the accuracy of the sample selection procedure, practical experiments showed that the

resulting image quality usually is improved. That is because by taking many closer

samples from different views usually leads to a lot of stitching artefacts. Instead these

approaches reduce the amount of spurious switching between different source views

during stitching. Figure 4.17 shows an example of this issue, it represent an example

of sample selection from two source views corresponding to the light and dark green

colours. Fig. 4.17a correspond to a more accurate distortion representation but at the

end leads to a worse image due to the many spurious switches. Fig. 4.17b, obtained

with low-pass filtering and larger blocks leads to a better rendered image. Section 4.8

will show how it is possible to reduce further the amount of spurious switching by

post-processing the distortion choices.

4.5 Holes related issues
As noted previously, some of the samples in the warped source views V i→∗ have no

corresponding points on the source images. We called them “holes.” We divided the

4.5 Holes related issues 73

a) b)

Figure 4.17: Sample selection from 2 images: a) with per-sample distortion, b) with
distortion averaged on blocks and low-pass filtering

holes into two types: exterior holes and interior holes (see Figure 4.4).

Exterior holes are common to all the warped source images V i→∗, since they cor-

respond to pixel locations which do not belong to the silhouetteR∗ of the object. Even

though all V i→∗ are zero outside R∗, this does not mean that the resolution compo-

nents Ri→∗
d are zero outside the corresponding, scaled region. The reason is that the

DWT (or any multi-resolution transform for that matter) involves overlapping basis

functions, which arise as the translates of a set of analysis filter impulse responses.

This can lead to artefacts in the rendered views: every sample in one of the subbands

at resolution level l corresponds to a block of size 2l ·2l in the image and this block can

fall only partially inside the silhouette of the object. Setting the value to zero because

most of the block is out of R∗ can cause errors in the samples inside the block. An-

other problem is that the wavelet synthesis in a certain point depends not only on the

corresponding coefficient but also on the coefficients close to it. Again wrong values

outside the silhouette can affect the samples on the boundary.

As a result, synthesizing V ∗ directly from the resolution components defined by

equation (4.19) produces a result whose region of support is not limited to R∗, with

ringing near the boundaries of this support.

To eliminate this problem, it is sufficient to simply set R∗d [p] equal to R
i∗d[p]→∗
d [p]

for all p in the domain of Rd, i.e. we have to take from one of the views the samples

outside the silhouette of the object. Even if no depth information is available for the

point outside the silhouette and no reprojection is possible the result will be correct

because all the samples outside R∗ in all the source images and in V ∗ will have the

74 Chapter 4. Distortion-sensitive view synthesis

same value (i.e. the background colour). The only missing element is how to select

a suitable stitching source i∗d[p] for each p /∈ R∗. The distortion framework we used

for the samples insideR∗ is useless because neither the warping operator Wb→d [p] nor

the distortion information (W i
b→d)

−1
(p) are available at these locations. We decided

simply to take them from the same source view we used for the closest sample inside

the silhouette. This effectively eliminates the problem of exterior holes, which we

shall henceforth ignore. This problem however only arises in the case of single objects

segmented from their background. If our original geometric description was sufficient

to cover the real world, like in the case of a reconstruction of a room or another closed

space, there would be no exterior holes, since R∗ will cover the entire image space of

all the views.

Interior holes represent a more challenging problem, since they occupy different

regions in each of the V i→∗. While all the exterior holes samples are the same in all

the warped views, some samples that are interior holes in a warped view are not holes

in another. Also, it is not sufficient simply to ensure that the best stitching source

i∗d[p] corresponds to a view which has no holes at the corresponding location: in the

samples close to the holes the extent of the overlapping wavelet basis function can lead

to incorrect reconstructions. That is due to the fact that two corresponding points on

different warped views can have completely different representation in the subbands

because they depend also on the surrounding samples that can be holes in one view but

not in the other.

More formally, in the wavelet decomposition of an image each sample in Ri→∗
d is

effectively formed from an inner product,

Ri→∗
d [p] =

〈
V i→∗, Ad

p

〉
, (4.22)

The size of the analysis kernels Ad
p is important to understand which samples can be

affected by the internal holes. The analysis kernels Ad
p can readily be found by iterative

application of the relevant DWT filters. For the DWT-based transform outlined in

Figure 4.7, we have

AD
p [n] = AD

L

[
n− 2Dp

]
, and

Ad
p [n] = Ad

H,pmod 2

[
n− 2d (p− pmod 2)

]
, 0 ≤ d < D

where pmod 2 is the vector [p1 mod 2, p2 mod 2] and the fundamental low- and high-

pass kernels are recursively defined by

A0
L [n] = δ [n] – the unit impulse

Ad+1
L [n] =

∑
k

hL [k] · Ad
L

[
n + 2dk

]
Ad

H,p [n] = −Ad
L [n] +

∑
k

gL [2k + p] · Ad+1
L

[
n + 2d (2k + p)

]
, p ∈ {0, 1}2

In the previous equations hL denote the low-pass DWT analysis filter impulse re-

sponses and gL denote the synthesis one. With finite support filters, the dimensions

4.5 Holes related issues 75

over which Ad
p is non-zero grow roughly as 2d. While precise formulation of the re-

gion of supportRd
p for Ad

p is not difficult, the following tight upper bound is convenient

for the case of separable symmetric DWT filters, with lengths 2Lh + 1 (analysis) and

2Lg +1 (synthesis). In our experiments, JPEG2000’s 9/7 DWT is employed, for which

Lh = 4 and Lg = 3.

Rd
p ⊆ [−ld, +ld]

2 + p, with ld �
{ (

2D − 1
)
Lh, d = D

(2d+1 − 1)Lh + 2dLg, 0 ≤ d < D
.

ld
d D = 3 D = 4 D = 5

0 7 7 7

1 18 18 18

2 40 40 40

3 84 84 28

4 172 60

5 124

Table 4.2: Size of the region of support of Ad
p

The values of ld in the different resolution levels for a 4 level DWT are shown in

Table 4.2. As it is possible to see from the table the region of support grows expo-

nentially with the size of the filter and become very large for the lowest frequency

bands. Figure 4.18 shows the region affected by internal holes in the example of Fig.

4.4 in the different subbands. It is clear that, excluding the lowest resolution level, the

holes-affected region becomes larger after every decomposition step.

We can now exploit equation (4.22) to understand which samples are affected by

interior holes. We note that Ri→∗
d [p] is affected by interior holes in V i→∗ whenever

Rd
p intersects Hi→∗. The samples representing interior holes can have completely

different values in the different warped views and if some of them are inside Rd
p they

will produce results which are generally inconsistent with any of the warped original

views. We would like, therefore, to choose the best stitching source i∗d [p] only from

those views V i such that Rd
p does not intersect any hole, i.e. is fully contained within

the complement, Hi→∗ of Hi→∗. This approach however arises some issues: The first

is how to handle the case where in every view the region of support of the sample

Rd
p intersects with the interior holes Hi→∗. Considering the large size of the region of

support it is not a very unlikely case, specially for the low frequency subbands. Even if

some of the views satisfies the constraint Rd
p ⊂ Hi→∗, they can have an unacceptably

high level of distortion. Is it really a good solution to prefer a view for which only

a small amount of information has been transmitted to one that has good quality and

perhaps only a small overlapping region between the region of support of the sample

and the holes ? Instead of just excluding the views that are affected from the interior

holes better results can be achieved by interpreting the overlap between the region

76 Chapter 4. Distortion-sensitive view synthesis

d = 1 d = 2

d= 3 d = D = 4

Figure 4.18: Example of the expansion of the holes-affected region in the different
subband of a 3 level DWT for the internal holes of Fig. 4.4

4.5 Holes related issues 77

of support of the sample Rd
p and the interior holes Hi→∗ as an additional source of

distortion.

We can introduce the an additional term in equation (4.21) to take into account the

effect of invalid samples in the region of support of p. The idea is that the distortion

is proportional to the extension of the fraction of the region of support covered by the

holes. We can introduce an additional term of the form:

Di→∗
holes,d [p] =

∣∣Rd
p ∩Hi→∗∣∣∣∣Rd

p

∣∣ Ei→∗
d [p] (4.23)

Where Ei→∗
d [p] is a local measure of the variance of the subband coefficients Ri→∗

d

in the vicinity of p. In fact in all the resolution component except for the lowest res-

olution component (d = D), Ri→∗
d has essentially zero mean, and so for every d < D

, Ei→∗
d [p] represents the local average of the power in the coefficients Ri→∗

d [p]. This

is reasonable, since the presence of holes tends to generate high energy coefficients in

the detail components Ri→∗
d , and high variance in the low-pass component Ri→∗

D . The

presence of artificial high energy coefficients generated by the transition between the

valid samples and the holes is the main source of distortion because they are inconsis-

tent across views with different holes positions. The amount of distortion is then given

by Ei→∗
d [p] multiplied by the ratio between the holes-affected area of the region of

support and the area of the whole region of support. By adding equation (4.23) into the

distortion model of equation (4.21) we obtain an augmented distortion formulation:

Di→∗
d [p] =

∑
b

Wb→d [p] ·Di
b

[(W i
b→d

)−1
(p)
]

+

∣∣Rd
p ∩Hi→∗∣∣∣∣Rd

p

∣∣ Ei→∗
d [p] (4.24)

Unfortunately this improved distortion model is still not enough to handle the holes

issue. The problem is that selecting only one stitching source for each location p is

likely to produce spurious artefacts in the vicinity of holes, since the selected stitching

source and the other sources we could have selected for other close samples are not

consistent.

To handle this problem we decided to relax the assumption that every subband sam-

ple can have only a single stitching source and allow multiple weighted contributions

from different views in the vicinity of interior holes. The stitching equation (4.19)

becomes

R∗d [p] =
∑

i

ρi
d [p] ·Ri→∗

d [p], with
∑

i

ρi
d [p] = 1, ∀p, d = 0, ..., D (4.25)

Where ρi
d are the weights in the range 0 to 1 that indicates how much every single

source view is used to generate the sample value. In the positions for which the region

of support of the best stitching source6 i∗d does not intersect any internal hole we will

just set ρi
d to 1 for the selected source and to 0 for all the other views. In the case

6 Computed with the augmented distortion model of equation (4.25)

78 Chapter 4. Distortion-sensitive view synthesis

where the region of support of the best stitching source intersect some of the internal

holes we instead compute the sample value with a weighted average of all the warped

views where the weights are in inverse proportion to the distortion corresponding to

the single views. More formally, the stitching weights ate given by:

ρi
d [p] =

⎧⎨⎩
δ(i− i∗d [p]), ifRd

p ∩Hi∗d[p]→∗ = ∅
1

Di→∗
d

[p]
�

j
1

D
j→∗
d

[p]

otherwise
(4.26)

where δ() is the kronecker delta and i∗d [p] = argmini D
i→∗
d [p], as before.

4.6 Accounting for Depth Uncertainty

If we use the distortion estimation based on the quantization error alone to determine

the best stitching source on a set of views with the same image quality, what is likely

to happen is that the selected source V i for every sample (or triangle) will tend to be

the one that for which the warping operatorW i is most contractive (see section 4.4.2).

This is the view whose focal plane is most parallel to the 3D surface at the point

in question. At a first glance it seems to be the best choice because in that view the

considered region has the greatest area and so the representation of the texture is more

detailed. Actually this impression would be correct if the geometry representation were

extremely accurate. Unfortunately most of the acquisition procedures for 3D scenes

(specially the passive ones) have a measurement error that is not negligible and depth

maps sampling and compression further increase it. Even if the error on the geometry

were the same on all the surface, the way in which it affects the reprojection of the

views is not the same for all of them. In one extreme case if we reproject a view over

itself the sample position will always be correct whatever is the error on the depth

values. On the other side the reprojection of views that have a completely different

orientation and viewpoint in respect with V ∗ will be heavily affected by the errors in

the depth representation. This leads to the intuition that if the geometric model were

highly unreliable we would expect to do better by selecting the original view image

which is most closely aligned with the desired view V ∗. Furthermore the error on the

geometry is not evenly distributed in all the view samples (e.g. the component due

to depth maps compression will be much higher in the proximity of the edges), and a

careful modeling of the distortion geometry is required.

The effect of uncertainty on the surface geometry is to introduce an error in the

local affine warping operator. This, in turn, introduce a translational uncertainty in the

position of the reprojected points on the warped views. This effect has been studied

previously in in [54].

To understand how uncertainty in depth δZ∗n is translated the into uncertainty in

the position of the reprojected points let us have a look at Figure 4.19. In this example

the user is looking at the 3D scene from position c∗ in the direction given by e∗ and

a view V i taken in direction ei from point ci is available. Let us consider the 3D

point xn corresponding to location n in V ∗, with depth Z∗n = Z∗ [n]. We are trying

4.6 Accounting for Depth Uncertainty 79

to understand how the uncertainty on Z∗n can be converted into the uncertainty δn =
n′ − n in the sample position in the warped image. If we assume an error of δZ∗n
on the depth value Z∗n that means that the true location of the considered point is

x′n = xn + δxn.

∗c

nx

∗e

n

∗V

∗
nZ

∗
nZδ

nx′

ic

ie

iV

nν

surface ny
projected location
of pixel which should
have been projected at xn

np

n′ ∗F

()nnxp nnn ′−⋅=− ∗∗)/(FZ

npδ nδ
∗c

nx

∗e

n

∗V

∗
nZ

∗
nZδ

nx′

ic

ie

iV

nν

surface ny
projected location
of pixel which should
have been projected at xn

np

n′ ∗F

()nnxp nnn ′−⋅=− ∗∗)/(FZ

npδ nδ

()nnxp nnn ′−⋅=− ∗∗)/(FZ

npδ nδ

Figure 4.19: Relationship between the various coordinates used to map depth uncer-
tainty δZ∗n at location n in V ∗ into displacement uncertainty δn in V i→∗.

We can obtain the relationship between δxn and δZ∗n from triangle similarity in

Figure 4.19:

δxn = δZ∗n/Z∗n · (xn − c∗) ,

The error on the 3D position of the point δxn corresponds to a translational error

in the computed sample position in view V i. This causes the pixel information which

should have been mapped to location n on V ∗ to be instead mapped to location n′

through yn, based upon the scene surface represented by the red line in the figure which

passes through xn with normal νn. In the figure, the point yn represent the position

where the correct reprojection from V i meets the surface obtained from the wrong

depth value and its projection onto V ∗ yields the location in which it is reprojected n′.
To get the position of yn, let us have a look at Figure 4.20. The segment ci − p2

is parallel to the surface while x′n − p1 and xn − p2 are perpendicular to it. It is also

clear from the figure that xn−p2 = p3−p1. From the similarity relation between the

blue and yellow triangles in the figure we can obtain the relation:

x′n − ci

x′n − p1

=
yn − ci

p3 − p1

80 Chapter 4. Distortion-sensitive view synthesis

∗c

nx

∗e

n

∗V

∗
nZ

∗
nZδ

nx′

ic

ie

iV

surface ny

n′ ∗F
∗c

∗e

n

∗V

∗
nZ

∗
nZδ

nx′

ic

ie

iV

surface ny

n′ ∗F

p1

p2

p3

p4

pnβ

α

Figure 4.20: Highlight of some geometric relationships in the previous figure

From this relationship we can obtain the following expression for yn :

yn = ci +
〈xn−ci, νn〉
〈x′n − ci, νn〉

(
x′n − ci

)
,

We can now define the error on the surface position as δyn � yn − xn. For small

δZ∗n/Z∗n, exploiting also the similarity between the red and green triangles in figure

4.20 we can obtain:

δyn = δxn − (x′n − yn) � δxn − 〈δxn, νn〉
〈xn−ci, νn〉

(
xn−ci

)
(4.27)

=
δZ∗n
Z∗n

[
(xn − c∗)− (xn−ci

) 〈xn−c∗, νn〉
〈xn−ci, νn〉

]
(4.28)

We can denote with δpn � pn − xn the error on pn. By looking at the purple and

gray triangles in Figure 4.20 we can derive the following expression for it:

δpn � pn − xn = (Z∗n/F ∗) · (n− n′) (4.29)

By introducing the approximation yn − pn � p5 − xn and exploiting the simili-

tude between the yellow and green triangles in Figure 4.21 we obtain the following

expression for δpn :

4.6 Accounting for Depth Uncertainty 81

∗c

nx

e

n

∗V

∗
nZ

∗
nZδ

nx′surface ny

n′ ∗F
∗c

nx

∗

n

∗V

∗
nZ

∗
nZδ

nx′surface ny

n′ ∗F

p5

npn

Figure 4.21: Again on the geometric relationships in depth estimation

δpn = pn − xn

= pn − yn + yn − xn

= pn − yn + δyn

� δyn − 〈δyn, e∗〉
〈xn−c∗, e∗〉 (xn−c∗) (4.30)

where e∗ is the view direction for V ∗. By substituting eqaution (4.28) into the

above expression we obtain:

δpn =
δZ∗n
Z∗n

〈xn−c∗, νn〉
〈xn−ci, νn〉

[
(xn−c∗) · 〈xn−ci, e∗〉

〈xn−c∗, e∗〉 −
(
xn−ci

)]
(4.31)

where F ∗ is the focal length for view V ∗. Finally we can introduce a new variable

δn :

δn = n− n′ =
δpn

F ∗/Z∗n
Putting all this together, we get the final representation of the mapping from depth

uncertainty to geometry uncertainty:

|δn|2 = |δZ∗n|2 ·
〈xn−c∗, νn〉2
〈xn−ci, νn〉2

· (F ∗)2 〈xn−ci, e∗〉2
(Z∗n)2 〈xn−c∗, e∗〉2 ·

∣∣∣∣ xn−c∗

〈xn−c∗, e∗〉 −
xn−ci

〈xn−ci, e∗〉
∣∣∣∣2︸ ︷︷ ︸

gi→∗
n

(4.32)

82 Chapter 4. Distortion-sensitive view synthesis

Equation 4.32 allows to map variance (error power) in the depth values Z∗n to a

corresponding variance (error power) in the position of the samples. It is important to

underline that the factor gi→∗
n depends upon fixed viewing parameters, together with

the surface position xn and normal νn seen at location n in view V ∗. At a first glance

the computation of gi→∗
n looks complex, but can be made easier by exploiting some

geometric relationship:

• The difference between 〈xn−ci, e∗〉 and 〈xn−c∗, e∗〉 is independent of n

• Z∗n = 〈xn−c∗, e∗〉

• xn can be expressed very simply in terms of Z∗n and n by suitable choice of

reference coordinates.

The final step is the conversion of positional uncertainty into the amplitude dis-

tortion. A good solution to this issue is the method developed in [54]. Entering in

more detail, we obtain an additional term in the distortion formulation for the warped

resolution component Ri→∗
d , of the form

Di→∗
geom,d [p] = |δn|2 · 1

(2π)2

∫
Bd

ΓV i→∗ (ω) · |ω|2 · dω (4.33)

where Bd ⊂ [−π, π]2 is the region occupied by resolution component Rd in the dis-

crete space Fourier domain and ΓV (ω) is the discrete space power density spectrum of

image V . The |ω|2 term serves as a frequency-dependent weighting of signal power. It

can be replaced by an assumed “average” weight |ωd|2 on the whole resolution com-

ponent Rd. In practice, we use a simple mid-band approximation to get

|ωd|2 =

(
3π

4
2−d

)2

By substituting this approximation into equation (4.33) we obtain a new expression

for the distortion term:

Di→∗
geom,d [p] = |δn|2 · |ωd|2 · Ei→∗

d [p] (4.34)

A variety of other methods to select |ωd|2 may be found in [54]. Considering that

the value of |δn|2 varies locally, and we are also interested in the local per-sample

distortion contributions Di→∗
d [p], we can now augment equation (4.24) by introducing

the new geometry-dependent term:

Di→∗
d [p] =

∑
b

Wb→d [p] ·Di
b

[(W i
b→d

)−1
(p)
]

+

∣∣Rd
p ∩Hi→∗∣∣∣∣Rd

p

∣∣ · Ei→∗
d [p]

+ |δZ∗d |2 [p] · gi→∗
d [p] · |ωd|2 · Ei→∗

d [p] (4.35)

4.7 Lighting related issues 83

The depth uncertainty on the samples in the resolution component |δZ∗d |2 [p] is

computed by reducing the resolution of the estimated local distortion field for Z∗ [n]
by the factor 2d and applying a suitable low-pass smoothing filter. The filter is the same

as the one used for Ei→∗
d [p], the local average power in Ri→∗

d at location p. The same

approach is used also for the coefficients gi→∗
d [p]. They are obtained by reducing the

resolution of the gi→∗
n field by factor 2d and filtering the result.

An important remark on the geometric distortion model regards the handling of the

boundaries between occluding objects . A true depth map Z∗ should be discontinuous

at the boundaries of objects which occlude other objects from view V ∗. Unfortunately

these discontinuities cannot be accurately represented using discrete samples Z∗ [n]
and the problem becomes even worse when depth information is derived from com-

pressed data, because most lossy compression standards tend to smooth the edges, as

discussed in Chapter 5. For this reason, it is reasonable to assign a depth uncertainty

power, |δZ∗n|2 which is at least as large as the local variance in Z∗n. In this way, we

take into account the reduced accuracy of our geometric representation in the vicinity

of occluding boundaries. Let us denote by σ2
p(w) the local variance around the sample

(in our practical implementation is computed on a 7x7 window w(p) centered on the

sample). In equation 4.35 we can replace |δZ∗n|2 with the new augmented distortion

term:

|δvarZ
∗
n|2 = max(|δZ∗n|2 , σ2

p(w))

Finally, as expected, if all the other things (such as source view distortion) are

equal, the geometry term forces the selection of views with smaller values of gi→∗
n ,

that are the views which are closer to V ∗.

4.7 Lighting related issues

a) b)

Figure 4.22: Example of lighting-related issues

All the previous formulation starts from the assumption that the value of corre-

sponding samples in different views is the same, i.e. if a certain point in the 3D space

has a colour in a view it will have the same colour in all the other views. Unfortu-

nately this assumption is not correct in many real situations, specially if the object

84 Chapter 4. Distortion-sensitive view synthesis

has a reflective surface, there are strong directional lights or shadows in the pictures.

Figure 4.22 shows a clear example of this kind of issues, for example many points on

the window and on the bonnet appears to be of a complete different color on the two

views due to reflections. These colour differences causes the coefficient in the DWT

decomposition of the various warped images to be different and leads to artefacts in the

reconstructed renderings as we already saw in the case of the interior holes. If we look

from the direction of V ∗ the position of the reflectances and shadows we expected to

see is of course the one of that view: views closer to the required one will have similar

reflections while the farther we move from the required viewpoint the more chances

we have to find reflections and shadows in completely different positions from where

they appear in V ∗. There exist techniques to compute the behaviour of an object in

respect to the lighting but they require to know additional information such as the po-

sition and characteristics of the lights and the reflective properties of the surface of the

object. Instead in our approach we assume that the only available information is the

set of views and depth maps.

Starting from these observations we introduced a new distortion contribution to

take into account the effects of the shadows and reflection which grows with the de-

viation between the orientation of views V ∗ and V i. We expect this distortion term to

be proportional to the signal power, even if in the case of specularity issues this is not

completely correct, and we give it the form:

Di→∗
light,d [p] = γ tan

(
max

{
0, cos−1

〈
ei, e∗

〉}) · Ei→∗
d [p]

Here, ei and e∗ are the view directions, as shown in Figure 4.19. If the angle

between the two views is smaller than 90 degrees γ will be multiplied for the tangent

of the angle between the two viewing directions, while for angles with more than 90

degrees we will just set the value to zero7. In the absence of careful lighting modeling,

γ is a heuristically assigned quantity, which depends on the amount of reflectance and

shadows we expect to find in the scene.

By introducing this new term into equation (4.35) we obtain a new augmented

version of the distortion equation:

Di→∗
d [p] =

∑
b

Wb→d [p] ·Di
b

[(W i
b→d

)−1
(p)
]

+

∣∣Rd
p ∩Hi→∗∣∣∣∣Rd

p

∣∣ · Ei→∗
d [p] (4.36)

+ |δZ∗d |2 [p] · gi→∗
d [p] · |ωd|2 · Ei→∗

d [p] + γ tan
(
max

{
0, cos−1

〈
ei, e∗

〉}) · Ei→∗
d [p]

Note that both the distortion contributions from geometry and light vary with the

local power Ei→∗
d in the relevant resolution component. The first term varies addi-

tionally with depth uncertainty, spatial frequency and properties of the surface normal

(through gi→∗
d), whereas the second term is affected only by the viewing angles ei and

e∗.
7Samples from views more than 90 degrees apart are expected to be hidden in V ∗ or to be discarded

due to the high distortion, the only reason because we set Di→∗
light,d [p] to zero is to avoid negative

distortion contribution (specially for angles close to −π/2 where the tangent has high negative values)

that can completely falsify the computed distortion values

4.8 Regularization of the selection choices 85

4.8 Regularization of the selection choices
The target of the proposed approach is the minimization of the distortion in every single

sample. Even if this approach is locally optimal it does not always lead to the best

overall image quality. That is because geometry uncertainty and lighting issues cause

position and color of samples warped from different views to have some mismatches.

Many experimental tests suggest that taking many close samples from different views

(see Fig. 4.17a) usually leads to lower image quality. For example the image obtained

by taking a single sample (or a small group of samples) from a certain view V i′ in the

middle of a large region taken from another source V i usually has a lower quality than

the one we would have if we take all the samples from V i. The reason is that even if

the sample from V i′ considered by itself has a lower distortion, the artefacts introduced

by mixing it with the samples from the other sources can be worse than the distortion

gain. As previously noted the filtering procedure associated with the wavelet domain

stitching reduces the impact of this issues. Furthermore by computing the distortion

estimates on block of samples and low-pass filtering their values it is possible to reduce

the number of spurious transitions.

��������	 ��������	
�����������	

Figure 4.23: Regularization algorithm: The source for the considered sample is
changed only in the third example

Even with all these precautions sometimes it is not possible to get completely rid

of artefacts due to spurious switching so we introduced an optional post-processing

procedure to reduce the number of transition in the distortion choices. The algorithm

works on every subband singularly taken: it scans the distortion choices and for every

sample it looks at the 8 pixels surrounding it (the pixels shaded in the examples of

Figure 4.23). It counts how many of the surrounding samples are taken from any

source view and if 5 samples or more are taken from a view that is not the current

source view it is selected as the new source for the sample. This of course happens

only if the sample in the new source is valid (it is not outside of the silhouette or a

hole) and has an acceptable distortion. The procedure can be repeated more times to

remove larger artefacts, specially in the high frequency subbands that have many more

samples. However experimental tests shows that in most practical configurations it

quickly (usually after 5-10 iterations) converges to a stable solution8.

8It is possible to build artificial shapes on which the algorithm can iterate many times without con-

86 Chapter 4. Distortion-sensitive view synthesis

a) b)

Figure 4.24: Distortion choices: a) Before regularization, b) After regularization

Figure 4.24 shows the distortion choices for a simple configuration with two source

views, one on the right side and one on the left of the required rendering. Figure 4.24a

shows the original distortion choice given by equation (4.36), while the output of the

regularization algorithm is shown in Figure 4.24b, it is easy to see that most spurious

samples have been removed. It is important to underline that the algorithm will clear

in just a few iterations some kind of shapes (e.g. thin lines or 2x2 blocks of pixels)

while bigger shapes like 4x4 or bigger blocks will not be cleared independently of the

number of iterations.

4.9 Performance issues
At a first glance the computational complexity associated with the proposed framework

could look too high for a real-time system that is able to work at interactive frame-rates.

However some implementation precautions permit to achieve very good performances.

The proposed framework is based on three main kind of operations: warping, wavelet

transform and the distortion computation. The described procedure requires to warp

all the available views to the required viewpoint, but this step can be performed very

fast exploiting highly optimized mesh warping algorithms or, even better, the hardware

acceleration features of the graphics card of most desktop computers. Differently from

standard 3D renderings here the computational complexity depends only on the num-

ber of views and on the resolution of the depth maps, but not on the complexity of the

scene. The procedure to reconstruct from the depth maps a mesh that can be used for

high performance hardware accelerated renderings will be described in Section 5.1.

Highly optimized algorithms based on the lifting framework [55] exist for the wavelet

transform. They are already used in real time application such as wavelet-based video

verging to a solution but in practice they do not often happen.

4.9 Performance issues 87

decoders.

What seems to remain critical from the performance viewpoint is the distortion

computation. A first observation is that it is possible to compute the distortion on

undersampled versions of the subbands, i.e. divide the subbands into small blocks

(usually 2x2 or 4x4 blocks), compute the distortion for only one sample inside every

block and use the choice made for that sample on all the pixels of the block. Even if

the distortion choices will be less accurate (but also more regular) the quality loss on

the final rendered view is usually small.

Another simple but very useful trick is to exclude from the distortion computation

all the views that are too far or with a too different viewing orientation from V ∗. For

example all the views with a viewing direction that forms an angle of more than 90

degrees with the required direction can be excluded because it is highly unlikely that

any triangle will ever be taken from them. Far views instead could perhaps have use-

ful information for low frequency subbands but will for sure have no data for high

frequency (detail) subbands in a close-up viewing of some object.

Section 7.4 contains some examples of the performance of the current implemen-

tation of the systems on the sample datasets.

88 Chapter 4. Distortion-sensitive view synthesis

Chapter 5

Distortion-sensitive geometry synthesis

The previous chapter shows how the client can synthesize the required view V ∗ from a

collection of available views and a single depth map Z∗ corresponding to view V ∗. A

possible implementation of this strategy could be to compute Z∗ at server side, com-

press it as an image and finally transmit the compressed data progressively to the client,

which would estimate its distortion using the same methods it uses to estimate local

distortion in the compressed views V i. However, this approach has a couple of im-

portant drawbacks that makes it unfeasible: the first is that the server would need to

compute and compress a new depth map from the 3D model for every frame. This op-

eration would add a huge computational overhead at server side, specially for complex

scenes, and also require the availability of a complete 3D model of the scene instead

of just a set of depth maps. The second is that the server would have also to transmit

a distinct depth map Z∗ for each view the client may wish to render, thus widely in-

creasing the bandwidth usage. This solution at the end has all the same fundamental

drawbacks as having the server generate and compress each distinct view V ∗ which

the client may be interested in, which is the problem we have been seeking to avoid.

Another possibility could be to generate the depth maps from a scalably compressed

3D mesh which is incrementally transmitted by the server. There exists a substan-

tial body of work on progressive compression of 3D meshes (e.g., [5, 6, 7]), which

could be leveraged to this end. However we are trying to avoid the construction and

transmission of a complete 3D representation of the scene.

5.1 Proposed approach

In our approach we assume the server holds only a set of depth maps taken from some

different viewpoints (Fig. 5.1). The position of the viewpoints depends on the acquisi-

tion procedure used to build the depth information. Usually it corresponds to the taking

position of the available views, but it is not necessary. As for the images also the depth

maps are transmitted to the client in a scalable progressive way. At every time during

the interactive browsing the client will have received only some of the available depth

maps (or even only a certain region of a particular depth map) and all with different

quality levels (see Figure 5.2).

90 Chapter 5. Distortion-sensitive geometry synthesis

Figure 5.1: Example set of depth maps for the Santa Claus statuette

Figure 5.2: Reconstructed 3D models using a depth map scalably compressed with
different bitrates.

This solution has some big advantages: firstly it matches perfectly the originally

captured information, since usually 3D scanners deliver data in the form of images

with depth information. The proposed scheme obviates the need to actually find a

complete surface model, which is a hard task if the scene is complex or the content

in the database grows as more information from different viewpoints is captured. Fur-

thermore, this approach permits the delivery of only that part of the geometry which is

relevant to the required view.

The procedure we use is basically the same we applied to the images. We aim

at synthesizing the required depth map Z∗ from a collection of available depth maps,

Zi1 , Zi2 , ..., which the server has already delivered with varying levels of fidelity and

relevance.

The complete scenario is depicted in Figure 5.3, both the server and the client work

with a collection of source images V i and a collection of depth maps Zi. Depth maps

are also compressed as images: as explained in Section 3.2 they are all represented as

16 bit greyscale images and compressed using JPEG2000. Depth information is com-

municated incrementally, on demand. As for the images, it is possible to exploit all

the quality, resolution and position scalability features of the JPEG2000 compression

standard also for depth information. The viewpoints associated with the depth maps

need not necessarily coincide with the viewpoints associated with the source images.

The server must decide how to distribute its available bandwidth between the enhance-

ment of views V ik which are already partially available at the client, the enhancement

of existing depth maps Zij which have also been partially transmitted to the client, the

delivery of a new view, more closely aligned with V ∗ or the delivery of new depth

5.1 Proposed approach 91

V1

V0

Z0

Z1

V1

V0

Z0

Z1

Figure 5.3: Browsing environment with a fixed set of views, V i, and depth maps Zi.
In this example, V 0 and Z0 share the same view point, whereas V 1 and Z1 do not.

maps.

The synthesis procedure for geometry information follows a path similar to the im-

age case: firstly each available depth map Zi is turned into a corresponding estimate

Zi→∗ for Z∗. This is quite easy because every sample in every depth map is associated

to a precise position in the three dimensional space. In our current practical implemen-

tation we build a triangular mesh for the surface described by every depth map Zi and

then we look at this mesh from the viewpoint of V ∗, a task which may be accomplished

using the graphic engine on many popular graphics cards1.

A possible question at this point is if the construction of the mesh is really needed.

In fact it is possible directly warp the samples from Zi to Z∗ but there are some draw-

backs: it is not possible to warp the samples positions from Z∗ to Zi (we have no

representation of Z∗), we must warp in the opposite direction with the consequent

sampling issues, i.e. multiple samples of Zi could be warped to the same position in

Z∗ and there could be no samples mapped to other positions. It is possible to deal with

these issues by averaging and interpolating but the mesh approach gives better results.

The triangular mesh also does not need to be rebuilt for each frame but only when new

data become available for that particular depth map. Finally by loading the mesh into

the graphics card memory and exploiting hardware accelerated rendering very good

performance can be achieved.

The construction of the mesh seems very simple but should be performed carefully.

For example a 1024x768 pixels depth map has almost 800000 samples and the mesh

obtained by just using every sample as a vertex and joining the adjacent ones is quite

big. To achieve good performance it is necessary to reduce the size of the meshes. A

possible solution is to just downsample the depth maps, but this will cause a loss in

1The most common graphics libraries offer a function that allow to extract from the hardware the

contents of the depthbuffer of the videocard, that is exactly the depth map from the current viewpoint.

92 Chapter 5. Distortion-sensitive geometry synthesis

the precision of the three dimensional representation. Better results can be obtained by

observing that a fine mesh representation is really useful only in the regions where the

depth is changing fast.

a) b)

Figure 5.4: Multi-resolution mesh construction algorithm: a) Source depth map b)
Corresponding mesh

A first observation is that in the points close to the edges of the object there is a

very fast change in the depth values and a finer mesh representation is required. A

possible solution is to build a mesh that has a precise representation in the proximity

of the edges and a more coarse one everywhere else. The edges are not the only points

in which the depth has big variance, to obtain a better representation we developed a

multi-resolution algorithm to build a mesh that is finer where the depth has a higher

variance. Figure 5.4 shows an example of mesh built using this technique, the vertexes

are highlighted in red and from the figure it is easy to see that they are more dense in

proximity of the edges or of object features where there is a high depth variance such

as the headlights.

The meshes built from the different depth maps are used to build a set of predic-

tions of Z∗. As in the image cases, it is necessary to find a way to combine together

the information coming from the different depth maps. Figure 5.5, shows an over-

all scheme of the procedure to reconstruct Z∗ from a set of source depth maps. The

multi-resolution stitching procedure we used for the images is not suitable for the depth

information. The reason for this is that while the discontinuities in the images represent

visual artefacts that we tried to avoid, we instead need to preserve the discontinuities

in Z∗ because they represent relevant scene features such as occlusions or edges. The

filtering procedure used in multi-resolution stitching instead tend to destroy them. For

the depth information we decided to simply perform the stitching directly in the full

resolution pixel domain. The final depth map is so given by equation 5.1 :

Z∗[p] =
∑
p

αi[p] · Zi→∗[p] (5.1)

5.1 Proposed approach 93

��

��

��

��

��

����	

����	

����	

��

���������
���������

������������
�����������

�	

���������

������ ������

���������!�"���#�����$�����������

Figure 5.5: Depth reconstruction procedure

Where αi[p] = 1 if sample p is going to be warped from the depth map Zi and

αi[p] = 0 otherwise. The final missing elements is the computation of the αi[p] co-

efficients, i.e. how to select which samples are going to be taken from every different

source depth map.

The effect of the reprojection of the depth maps is similar to the image case, expan-

sion or contraction in the local affine warping operators associated with this procedure

affect the way in which distortion is mapped from subbands in the compressed Zi

images into the synthesized depth candidate, Zi→∗.
This is governed by a set of weights, similar to the Wb→d developed in Section

4.4, except that we currently perform depth synthesis directly at full resolution – i.e.,

without the multi-resolution framework. The weights coefficients in this case depends

only on the warping operator, we will denote them with Wz [p]. Equation 5.2 gives the

distortion on Z∗ associated with every sample taken from depth map Zi :

Di→∗
z [p] = Wz [p] ·Di

z[
(W i

z

)−1
(p)] (5.2)

Local distortion estimates in each warped depth map Zi→∗ are used to compute

the αi coefficients, by just selecting the depth map with the lower distortion in a way

essentially identical to that described for images in Section 4.4:

αi[p] =

{
1 if i = argmini Di→∗

z [p]
0 otherwise

A useful feature of the distortion-sensitive geometry synthesis is that we also get

the local distortion information in Z∗ that is then available for inclusion in the view

synthesis problem, in accordance with equation (4.36).

94 Chapter 5. Distortion-sensitive geometry synthesis

a) b)

Figure 5.6: Holes in depth estimation: a) Depth map Zi, b) Estimation of Z∗ from Zi

5.2 Holes related issues in depth estimation
Also in the depth map case the reprojection of Zi on Z∗ is not enough to predict the

depth values and we have to deal with “holes” related issues in the depth synthesis

problem. Figure 5.6b shows how the mesh reconstructed from the depth map in Figure

5.6a appears when observed from a different viewpoint. It is easy to see that some parts

of the scene geometry cannot be derived from a single depth map and there are holes

due to occlusions in the source view. At a first glance seems that the holes problem in

the depth case should be much easier because we avoided to use the multi-resolution

stitching. By performing just the simple sample stitching at full resolution every pixel

depends only on itself and there are no issues related to large filter kernels. In this

simpler framework the holes issue seems to be easy solvable by just avoiding to take

samples that have been marked as holes.

Unfortunately it is necessary to take into account also the effects of lossy compres-

sion. Each individual depth map Zi can generally be expected to exhibit strong discon-

tinuities in regions of object occlusion and indeed these discontinuities do correspond

to interior holes in the inferred depth map Zi→∗. Compression using waveform coders

such as JPEG2000 and JPEG, however, tends to produce ringing and considerable error

in the vicinity of such discontinuities.

This phenomenon is illustrated schematically in Figure 5.7. In the figure, com-

pressed depth maps Z1 and Z2 are each used to construct candidates Z1→∗ and Z2→∗

for Z∗, where Z∗ corresponds to the vertical elevation of the scene surface in this

example.

Evidently, the surface section between P1 and P3 is not visible in Z1 and the depth

values in this region should be extracted from another depth map. While from the

5.2 Holes related issues in depth estimation 95

actual surface

2Z ∗→2Z

∗→1Z

∗→1H

Z

actual surface

2Z ∗→2Z

∗→1Z

∗→1H

P1

P2P3

1Z

Z*

Figure 5.7: Illustration of the effect of discontinuities in individual depth maps Zi on
the synthesized depth candidates Zi→∗. In the figure, the depth of interest Z∗ which we
wish to synthesize is the vertical height of the surface.

figure the presence of the hole is clear, it is quite hard to recognise the real situation

from just Z1. We cannot get any information on the real shape of the surface between

the two points and even if we can guess the presence of a hole from the fact that

Z1 should have a discontinuity at the point where the scene surface folds back upon

itself, this discontinuity is usually corrupted by ringing and loss of high frequency

details due to lossy compression. As a result, it is not possible to detect the holeH1→∗

which should appear in Z1→∗. In fact, holes in Zi→∗ are difficult if not impossible to

detect, based on Zi alone. The only way to detect the hole in Z1 is by exploiting the

information from another depth map. In the example in Figure 4.19 we can exploit Z2,

for which the inferred depth Z2→∗ is shown as a dotted line.

Fortunately, our distortion-based stitching procedure should recognise that Z1→∗ is

subject to a great deal of distortion due to the stretching which Z1 undergoes in the

vicinity of surface folding. To encourage this, we ensure that the distortion estimates

used for each source depth map Zi have the property that distortion is judged to be at

least as large as the local variance of that depth map, in addition to any estimates of

the underlying compression noise.

The source distortion is then given by the maximum of the compression distor-

tion and the local variance around the sample, that in our practical implementation is

computed on a 7x7 window w(p) centered on the sample:

Di
var,z[p] = max(Di

z[p], σ2
p(w))

We can now replace the source distortion in equation 5.2 with the new augmented

96 Chapter 5. Distortion-sensitive geometry synthesis

version Di
var,z[p] that includes the variance, thus obtaining a new expression for the

depth map distortion :

Di→∗
z [p] = Wz [p] ·Di

var,z[
(W i

z

)−1
(p)] (5.3)

This is the same rule which we outlined at the end of Section 4.6 for Z∗. The

idea behind the additional term in the source distortion is that regions in which depth

map Zi was originally discontinuous will be treated with distrust. The error is then

further amplified by the stretching when the source depth map is mapped to Z1→∗,
encouraging the selection of the much more reliable candidates from better aligned

depth maps (such as Z2→∗ in the example). The final stitched depth map can have

much less uncertainty than either of the candidates Zi→∗ in isolation, allowing for high

quality view synthesis via the methods of Chapter 4.

Chapter 6

Server policies

In the previous chapter we described how the information on the different images and

depth maps available at client side can be exploited to reconstruct the views required

by the user. In all the previous formulation we have assumed that the client had re-

ceived from the server a certain subset of the information available at server side. The

missing element in the proposed framework is how to select which information from

the different views and depth maps need to be transmitted from the server in order to

obtain the best rendering at client side.

The global architecture of the server application has been introduced in Section

3.3 and is based on the JPIP interactive protocol for JPEG2000 images. This choice

allows a great flexibility in the selection of the information that is going to be sent. For

every image and depth map it is possible to send just a particular spatial region with

the preferred quality level and resolution. This wide set of choices allows an optimal

exploitation of the available transmission resources but also increases the complexity

of the decision problem on the information to be transmitted. The issue is made even

more complex by the presence of two completely different kind of information , i.e.

texture and geometry. Even if some work on this issue has been carried on (for example

in [4] and [2]), how to distribute the bandwidth between these two elements remains

an open issue.

The starting point to deal with the bandwidth allocation problem is of course the

distortion framework we developed for the client. Not only the availability of an esti-

mation of the distortion reduction associated to every element offers a straightforward

way to select which packets are the best to be sent, but also by using the same model at

client and server side we can ensure that the transmitted data will also be selected by

the multi-resolution stitching procedure at client side. However some important issues

needs to be considered. JPEG2000 offers many scalability features but while the selec-

tion procedure at client side allows to select a different source for every single sample,

choices at server side must be done on the compressed data blocks, that correspond

to larger regions. Furthermore the geometry dependent distortion term in Section 4.6

introduce a dependency between the choices made for the depth maps and the ones for

the images. For example the transmission of more geometry information can force the

transmission of more data for an already available view that can be warped with higher

fidelity instead of transmitting a new closer view.

98 Chapter 6. Server policies

In the following sections we will assume that geometry has already been trans-

mitted to the client and we will develop a distortion driven procedure to select which

elements from the different compressed representations of the various views are the

best to be sent based on the available geometry information. The extension of the pro-

posed method to the distribution of bandwidth between geometry and view data is the

subject of the current research activity and in Section 6.5 we will briefly describe how

the proposed scheme will be exploited for geometry transmission.

LH2

LL2 HL2

LH1 HH1

HL1

HH2

LL0

image

LL1

embedded
code-block
bit-streams

precinct

packets
p1 p2 p3

Figure 6.1: Basic JPEG2000 elements transmitted by JPIP

6.1 The server optimization problem
For simplicity we start from the problem of distributing transmission bandwidth amongst

the various view images V i, assuming that geometry is already available at client side.

We assume that each view image has been compressed using JPEG2000 and is thus

represented by a collection of code-blocks Bi
β . As explained in Section 2.4 after per-

forming the wavelet transform every subband is divided into a set of precincts corre-

sponding to a subdivision of the subband into rectangular regions (in the current prac-

tical implementation 32x32 samples blocks). For efficient communication of localised

regions of interest, JPIP servers often repacketize the content, as required, to ensure

that precincts from the lowest resolution level (LL subband) of each image component

contain only one code-block each, while precincts from all other resolution levels con-

tain only one code-block from each of the LH, HL and HH subbands associated with

that resolution level (i.e., three code-blocks in all). Each precinct is then itself divided

into packets corresponding to the different quality layers.

JPIP servers typically work in epochs; in each epoch, a list of data-bin increments

is compiled and delivered to the client. The amount of data sent in each epoch is

controlled in order to avoid excessive amounts of in-transit traffic which could damage

responsiveness to user navigation requests. This usually involves some form of channel

6.1 The server optimization problem 99

bandwidth estimation, with epochs sized for a transmission latency of say 1
2

second to

1 second. These issues are discussed further in [9].

In the following discussion we will assume that the server transmits a whole num-

ber of packets from each precinct data-bin in each epoch. Every JPEG2000 packet

contains the information required to improve the quality of one of the precincts as

shown in Figure 6.1. Following the distortion-based approach we used until now, ev-

ery packet contains the information required to reduce the distortion associated to the

code blocks corresponding to the precinct. Let Di
β,q be the squared error distortion con-

tributed to the decompressed image V i by code-block Bi
β when only the first q quality

layers are available. These distortion values can be computed by just comparing the

decompressed image with the full quality one and can be stored on a table at server

side. Differently from the client image compression distortion estimation, in this case

we have no transmission related issues and the size of the table is much smaller having

to save the data only for each codeblock and not for every sample (or block of sam-

ples). So we can use the actual distortion values and there is no need to estimate them

using the method described in [53]. The only issue related to this approach is that the

actual values and the ones estimated at client side could have some mismatches leading

to different choices on which information is going to be used. Also let {P i
π}π denote

the collection of precincts from view V i, indexed by π. Finally, we assume that the

server keeps track of the number of quality layers qi
π, which are available in the client’s

cache for all code-blocks in precinct P i
π.

At this point, since our spatial multi-resolution transform is based on an approx-

imately orthonormal DWT, we can express the total distortion in V ∗ as a sum of the

contributions coming from the distortion in the different subbands that are synthesized

into V ∗:

D∗ ≈
D∑

d=0

∑
p

D∗
d [p] (6.1)

In equation (6.1), D∗
d [p] represent the mean square error associated with the sample

at location p in resolution component R∗d [p]. The samples in the subbands used to

reconstruct V ∗ are taken from the different source views and as described in Section

4.4 the distortion in the subbands of V ∗ can be estimated from the distortion in the

source images. Assuming that the distortions associated with each source view are

uncorrelated and exploiting equation (4.25) we can write:

D∗ ≈
∑

d

∑
p

∑
i

(
ρi

d [p]
)2

Di→∗
d [p] (6.2)

In fact most of the terms in equation 6.2 are 0 because, except for the areas in

proximity of the holes, the blending weights ρi
d [p] are just set to 1 for the best stitching

source and to 0 for all the other views. If we look at equation (4.36), the distortion

contribution coming from each sample can be expressed as the sum of two terms, one

is the image compression distortion, that is a function of the amount of data transmitted

for that particular codeblocks and the other is given by the sum of the geometry and

100 Chapter 6. Server policies

lighting terms that do not depend on the transmitted data1. We can represent with

Θi→∗
d [p] the sum of the geometry and lighting contribution:

Θi→∗
d [p] = |δZ∗d |2 [p] · gi→∗

d [p] · |ωd|2 · Ei→∗
d [p]

+ γ tan
(
max

{
0, cos−1

〈
ei, e∗

〉}) · Ei→∗
d [p]

If we substitute equation (4.36) into equation (6.2) we obtain the following repre-

sentation of the distortion in the final rendered view at client side:

D∗ ≈
∑

d

∑
p

∑
i

(
ρi

d [p]
)2(

Θi→∗
d [p] +

∑
b

W i
b→d [p] ·Di

b

[(W i
b→d

)−1
(p)
])

(6.3)

The server’s target is of course to deliver the elements from the various compressed

images that minimize the distortion D∗ on the final rendered view subject to the con-

straint on the available bandwidth. If we denote with L ≤ Lepoch the amount of data that

can be transmitted in every JPIP epoch, the problem can be reformulated in Lagrangian

fashion as a family of unconstrained optimization objectives J∗ (λ), parametrized by

λ > 0, where

J∗ (λ) = D∗ (λ) + λL (λ) (6.4)

The minimizing solution to each J∗ (λ) has the obvious property that D∗ (λ) is as

small as it can be without increasing L beyond L (λ). As a result, our global con-

strained optimization problem is solved once we find λ such that L (λ) = Lepoch. In

practice the assumption that we are going to send whole packets made the problem

discrete and it is quite unlikely that we can find such a λ. In the practical implementa-

tion, noting that L (λ) is a decreasing function of λ, we select the smallest λ for which

the constraint L (λ) ≤ Lepoch is satisfied. In common situations where we have several

different source images each one made of many small code-blocks corresponding to

the different subbands and spatial positions, we find that the resulting L (λ) can be

very close to Lepoch.
At a first glance the optimization problem seems similar to a standard image com-

pression issue, specially considering that the geometry and lighting term does not de-

pend on the transmitted data. Unfortunately it is complicated by the fact that the blend-

ing weights ρi
d [p] themselves depend upon the local distortion in the view images. In

other words the blending weights depend on the transmitted data and by sending new

data on one of the views we can cause a change in the stitching decision. This issue

introduce a complex dependency between the two elements because by transmitting

new data we can change the weights that in turn affect the decision on which data is

going to be transmitted.

To address this difficulty, the optimization procedure has been divided into two

steps. At server side two sets of blending weights are considered:

1We are assuming that geometry is already available at client side, in the complete bandwidth allo-

cation problem this term would depend on the choices on the transmission of geometry information.

6.1 The server optimization problem 101

• We denote with ρ̊i
d [p] the blending weights associated to the current available

data, i.e. the values computed on the basis of the already received data, without

taking into account the effect of the data that is going to be transmitted in the

current epoch. The calculation procedure is the same that is used at client side,

exploiting the fact the server keeps track of what it has sent to the client and

knows the number of packets (quality layers) which the client has in its cache

for each precinct data-bin.

• We will instead use ρi
d [p] for the blending weights which would be used if all

source views V i were available with the maximum available quality – i.e., the

weights corresponding to the blending choices that the client would made if it

had received all the available data at server side. If the user stops on a particular

view, while more and more data is received from the server the choices will

progressively move towards ρi
d [p] that represent the final stitching decisions. An

useful property of this set of weights is that they do not depend on the amount

of transmitted data and need to be recalculated only when the client’s view of

interest changes, rather than in each epoch.

A final remark is that the proposed scheme does not rely on the fact that the server

is perfectly synchronized with the client. Even if they work with the same distortion

model, we do not expect the blending choices to be exactly the same. This allows the

server to use the more accurate distortion values obtained by comparison with the full

quality image instead of the ones estimated from the compression parameters. The

server can also work at reduced resolution, exploiting the fact that the distortion fields

used to determine the best stitching source at client side are mostly smooth. This

is also acceptable because we are only using this information at server side to make

decisions regarding the amount of data to send for each code-block and code-blocks

are reasonably large. Finally note that the server performs only distortion mapping; it

does not actually synthesize any views.

a) b)

Figure 6.2: Blending weights: a) Current choices ρ̊i
d, b) Choices with full quality

images ρi
d.

102 Chapter 6. Server policies

For a better understanding of the difference between the two sets of weights, let’s

have a look at Figure 6.2. It refers to the case where 3 views are available at client

side, the blue one is close to the required viewpoint but only a few bytes have been

transmitted for it. The other two have already been completely transmitted but they

are farther from the required viewpoint. Figure 6.2a shows ρ̊i
d, in this case the current

version of the blue view has poor quality and most samples are taken from the other

two views. Instead Figure 6.2b shows ρi
d, the choices that we had if all the images were

available at full quality. As expected most samples are taken from the closest view.

To deal with the optimization problem at server side we decided to consider two

different particular cases :

• In the first case we solve the optimization problem using the assumption that

ρi
d [p] = ρ̊i

d [p], i.e. the blending weights will not change between this epoch and

the next. This means that we are going to continue using the same choices we are

using now also in the future. With this assumption the server will tend to send

more information for those code-blocks which already contribute most strongly

to the client’s view synthesis process. This reduces the distortion associated with

the source views (or part of them) that are already used to generate the required

view and reinforces the decision of using them also in subsequent epochs. We

call the set of packets that will be sent in this case “reinforcing enhancements”.

• We instead call “disruptive enhancements” the set of packets that the server is

going to send in the case where the blending weights will change from ρ̊i
d [p] to

ρi
d [p] once all data in this epoch has been transmitted, i.e. the choices that we

would have made if all the images were available with maximum quality

By using reinforcing enhancements the system will continue to use the views that

are currently available with good quality but will not be able to exploit the availability

of closer views better aligned with the required rendering for which no data has still

been transmitted. Moreover, since ρ̊i
d [p] may well be zero for some source views

which are non-zero in ρi
d [p], in many circumstances with reinforcing enhancements

alone we will never reach the highest rendering quality. To deal with this issues we

need the disruptive enhancements. On the other hand, the data that is going to be

transmitted in the next epoch will not probably be enough to force the switch from the

current blending weights to the final choices and part of the data we are transmitted

will not be used because the choices at client side will be different. In the subsequent

epochs after receiving further data the choices will change towards the final ones and

the data will be used, but this will never happen if the user changes his view of interest

before all the information has been transmitted. The two kind of reinforcements can

be considered as the two extreme cases of the optimization problem and a solution

that is able to combine the results from these two optimization procedures is needed.

In the following sections we will start the description of the optimization algorithm

from the simpler case of the reinforcing enhancements, then we will introduce the

disruptive ones. Finally, in Section 6.4, we discuss the complete solution, in which the

two optimization procedures are combined.

6.2 Optimization of Reinforcing Enhancements 103

6.2 Optimization of Reinforcing Enhancements
The reinforcing enhancements correspond to the case where the blending weights re-

main constant and are not affected by the data that is going to be sent to the client. We

can so replace the blending weights in equation (6.3) with the constant set of values

ρi
d [p] = ρ̊i

d [p]. In Section 6.1 we noted that the geometry-dependent terms Θi→∗
d [p]

do not depend on the amount of transmitted data. Now they are multiplied by the

blending weights that are constant and the whole geometry dependent term represent a

constant offset to D∗ that can be excluded from the optimization problem. By substi-

tuting the distortion formulation into equation 6.4 we obtain the following optimization

objective:

J̊∗ (λ) = λL (λ) +
∑

d

∑
p

∑
i

(
ρ̊i

d [p]
)2∑

b

W i
b→d [p] ·Di

b

[(W i
b→d

)−1
(p)
]

(6.5)

We can combine together the blending choices and the warping coefficients for all

the samples which get mapped to a certain sample k into a new operator Ψ̊i
b [k] :

Ψ̊i
b [k] =

∑
d,p	(Wi

b→d)
−1

(p)=k

(
ρ̊i

d [p]
)2

W i
b→d [p]

and by introducing it into equation 6.5 we obtain a new more compact representa-

tion of the minimization target:

J̊∗ (λ) = λL (λ) +
∑

i

∑
b

∑
k

Ψi
b [k] ·Di

b [k] (6.6)

To compute the distortion term in equation (6.6) we need to know the distortion

on each single sample Di
b[k] , but the server stores in the distortion tables only the

total squared error Di
β,q in each code-block Bi

β when we have received q quality layers

for that block. In the absence of more precise information, therefore, we compute

the distortion on each sample k as the average of the distortion of the samples in the

codeblocks Bi
β that contains the sample. Di

b[k] is then given by the distortion in the

codeblock divided by its size:

Di
b(β) [k] = Di

β,q/
∣∣Bi

β

∣∣
where

∣∣Bi
β

∣∣ is the number of samples in the code-block and b(β) denotes the sub-

band to which the code-block belongs.

In the practical implementation the server can decide to transmit whole packets

each one corresponding to a quality layer in one of the different precincts. Entering

in more detail the data corresponding to the different precincts is divided into differ-

ent quality layers and at the beginning of the current epoch the client holds a certain

number of quality layers for each precinct. Every packet that the server can transmit

permits to increase the number of quality layer in one of the precincts and the target is

to find the ones that allow to obtain the best reduction in the total distortion subject to

the bandwidth constraint.

104 Chapter 6. Server policies

Before going on, let us introduce some new notation symbols:

• Li
π,q represent the length in bytes corresponding to the first q packets in in

precinct P i
π

• q̊i
π represent the number of quality layers (packets) that the client already has in

its cache for precinct P i
π at the beginning of this epoch

• qi
π is the total number of quality layers (packets) which the client will have in its

cache for precinct P i
π after the end of the epoch current epoch. It is given by the

sum of q̊i
π and the number of packets that the server will transmit for P i

π in the

current epoch.

• Ψ̊i
β represent the sum of the coefficients Ψ̊i

b [k] on all the samples that belong to

the codeblock Bi
β :

Ψ̊i
β =

∑
k∈Bi

β

Ψ̊i
b(β) [k]

With this notation the amount of transmitted data for each precinct is given by(
Li

π,qi
π
− Li

π,̊qi
π

)
. We can now introduce a new expression of our optimization target in

terms of precinct data-bin decisions :

J̊∗ (λ) =
∑

i

∑
π

⎡⎣λ
(
Li

π,qi
π
− Li

π,̊qi
π

)
+
∑
Bi

β∈Pi
π

Ψ̊i
β ·Di

β,qi
π

⎤⎦ (6.7)

Equation (6.7) can be decomposed into a set of independent optimization objectives

for each precinct, for which the optimal solution is given by

qi
π(λ) = argmin

qi
π≥q̊i

π

⎡⎢⎢⎢⎢⎢⎢⎣λLi
π,qi

π
+
∑
Bi

β∈Pi
π

Ψ̊i
β ·Di

β,qi
π︸ ︷︷ ︸

D̊i
π,q

⎤⎥⎥⎥⎥⎥⎥⎦ (6.8)

The server holds pre-computed tables with Di
β,qi

π
and Li

π,qi
π

and can exploit them to

compute the solution of (6.8).

Figure 6.3 shows an example of the rate distortion curve and convex hull corre-

sponding to a particular precinct. For each precinct the delivery of a new packet cor-

respond to a couple in the set of distortion-length pairs
{(

Li
π,q, D̊

i
π,q

)}
q
. Every pair

correspond to a distortion-length “slope” S̊i
π,q. If the set of distortion-length points(

Li
π,q, D̊

i
π,q

)
is already convex, we can compute the slopes simply as the ratio of the

distortion gain versus the data length associated to the packet:

6.2 Optimization of Reinforcing Enhancements 105

),(6,6,
ii DL ππ

L

D
),(0,0,

ii DL ππ),(1,1,
ii DL ππ

),(2,2,
ii DL ππ

),(3,3,
ii DL ππ

),(4,4,
ii DL ππ

),(5,5,
ii DL ππ

),(7,7,
ii DL ππ

),(8,8,
ii DL ππ

),(9,9,
ii DL ππ

convex hull

ii SS 1,2, ππ =

ii SS 3,4, ππ =

iii SSS 5,6,7, πππ == ii SS 8,9, ππ =

),(6,6,
ii DL ππ

L

D
),(0,0,

ii DL ππ),(1,1,
ii DL ππ

),(2,2,
ii DL ππ

),(3,3,
ii DL ππ

),(4,4,
ii DL ππ

),(5,5,
ii DL ππ

),(7,7,
ii DL ππ

),(8,8,
ii DL ππ

),(9,9,
ii DL ππ

convex hull

ii SS 1,2, ππ =

ii SS 3,4, ππ =

iii SSS 5,6,7, πππ == ii SS 8,9, ππ =

Figure 6.3: Convex hull and distortion-length slopes associated with a particular
precinct P i

π for the purpose of reinforcing enhancements. Only those points h ∈ H̊i
π

(shaded circles) will ever be selected as solutions to equation (6.8).

S̊i
π,q =

D̊i
π,q−1 − D̊i

π,q

Li
π,q − Li

π,q−1

for q > 0

Figure 6.3 instead shows the more complex case in which the set of distortion-

length points is not convex. In this case we started from finding the lower convex

hull H̊i
π of the

(
Li

π,q, D̊
i
π,q

)
pairs, that in the figure is represented by the coloured

area. Note that only some of the distortion-length pairs lies on H̊i
π and these points

(represented by the shaded circles in the figures) will be the only ones that can be

selected as solution to equation (6.8). We will use the notation hi for the set of quality

layers q that lies on the convex hull. The ordered set of quality layers on H̊i
π is so given

by 0 = h0 < h1 < h2 < · · · .
The slopes are given by:

S̊i
π,q =

D̊i
π,hk−1

− D̊i
π,hk

Li
π,hk

− Li
π,hk−1

for hk−1 < q ≤ hk, k > 0.

The slopes are ordered in a decreasing way:

∞ = S̊i
π,0 ≥ S̊i

π,1 ≥ S̊i
π,2 ≥ · · ·

Excluding the case where qi
π(λ) < q̊i

π, i.e. the number of quality layers in the

solution is less than the number of already transmitted quality layers2, the solution to

2This case will never happen in practice

106 Chapter 6. Server policies

equation (6.8) is given by:

qi
π(λ) = max

{
q | S̊i

π,q > λ
}

,

Remember that only those q ∈ H̊i
π can actually arise as solutions to equation (6.8).

An important aspect of this slope-based formulation is that it provides some intuition

about the meaning of λ. It tells us that λ represent a sort of threshold on the distortion-

length slope. In each successive epoch, we expect λ to decrease, thus allowing addi-

tional quality layers q to pass the test S̊i
π,q > λ and to be chosen for transmission to the

client as reinforcing enhancements.

6.3 Optimization of Disruptive Enhancements
Disruptive enhancements correspond instead to the case where there is a switch from

the current blending weights to the ones we would have if all the images had been

received at maximum quality. The idea behind them is to handle the cases where

instead of improving the quality of currently used images better results can be obtained

by transmitting data for code-blocks of images that are not currently selected but are

better aligned with the required rendering.

V2

V1

V0

G

V2

V1

V0

G

New viewpoint

Old viewpoint,
high quality

image available

Only a few packets
transmitted for
the new image

Figure 6.4: Example of interactive scene browsing requiring disruptive enhancements

For example let us consider the case depicted in Figure 6.4. In the example the

user has been looking at the scene from the viewpoint of view V 0 for a while and

a high quality version of V 0 is available at client side. Then the user moves to the

viewpoint corresponding to view V 1. Initially, no data (or only a small amount of

data) is available for V 1 and it is most favourable to render the required view V ∗ by

6.3 Optimization of Disruptive Enhancements 107

warping the already received data for view V 0. View V 1 has a very high distortion and

the blending choices at the beginning force the system to take all the samples from the

good quality view V 0 : {
ρ̊0

d [p] = 1 ∀d,p
ρ̊1

d [p] = 0 ∀d,p

It follows that Ψ̊1
β = 0,∀β and from equation (6.8) we obtain that no reinforcing

enhancements will ever be taken from image V 1. At the beginning it looks acceptable

because V 0 has a better quality, and the switch to V 1 will cause and increase in distor-

tion (we will call the extra distortion associated to the change in the blending weights

switching penalty in the following discussion). But V 1 is better aligned with V ∗ and

the distortion associated to the samples taken from it goes down faster as soon as more

data is received. At a certain point we expect the switching penalty to be compensated

from the delivery of sufficient bytes from the code-blocks of V 1. Consider also that

the rate-distortion slopes in image compression become smaller and smaller as more

data is received, thus reducing the gain obtainable from V 0. Finally the highest image

quality will probably be achievable only by using V 1 because some high frequency

elements are just missing from V 0 (see Section 4.4.2). With the reinforcing enhance-

ments alone the client will continue to render V ∗ from V 0 and it will never start to

transmit data for the better aligned view V 1.

� �

�
�� �π

�
�� �π

�����	
�
��	�������

��	�������

�����������

������

��������������	�����	�

�����	��
���������	

���������	�
������������������

Figure 6.5: Convex hulls corresponding to the reinforcing and disruptive enhance-
ments

Figure 6.5 show the convex hulls associated to the solution of the reinforcing and

disruptive enhancements problems for one particular precinct. The dotted line bounds

108 Chapter 6. Server policies

i
qL ,π

i
qD ,π

policy switching
penalty, i

πΦ

distortion attributable
to precinct if policy is
not switched

min bytes expected
to force client
policy switch

first R-D optimal
policy switching point

original
convex hull

effective
convex hull

i
qL ,π

i
qD ,π

policy switching
penalty, i

πΦ

distortion attributable
to precinct if policy is
not switched

min bytes expected
to force client
policy switch

first R-D optimal
policy switching point

original
convex hull

effective
convex hull

Figure 6.6: Effective distortion-length slope properties associated with disruptive en-
hancements.

the reinforcing solution convex hull. At the beginning it shows a lower distortion due

to the already received data for V 0, but due to the worse alignment the curve decreases

slower than the disruptive one. Instead the disruptive slope (continuous line) starts

from a higher distortion, but decrease also faster. From the figure it is clear that at

the beginning it is better to send reinforcing enhancement but after a certain point (the

policy switching point in the figure) disruptive enhancements offer better results and

the change in the blending choices can actually happen.

In Figure 6.6 we underline how the policy switching penalty places an upper bound

on the effective distortion-length slope associated to disruptive enhancements. Let us

assume that the user’s point of view remain fixed. At the beginning the slope threshold
λ may be too large to favour disruptive enhancement, but the λ value decreases in

each successive epoch. At a certain point most of the reinforcing enhancements with

large distortion slopes S̊i
π,q will have been sent to the client and λ would be small

enough to include some disruptive enhancements. Another important observation is

that the distortion associated to disruptive enhancements starts from a higher value and

decreases faster, so there is a minimum amount of data to transmit on that particular

code-block before the policy switch becomes worthy. Since the amount of data the

server can transmit in every epoch is limited, it is also clear that we can introduce the

disruptive enhancement only in a very small set of code-blocks in each epoch. A final

remark about disruptive enhancement is that for making them really useful we expect

6.3 Optimization of Disruptive Enhancements 109

the client to made the same policy switch we have computed at server side, i.e. we

expect the blending choices to change from ρ̊i
d [p] to ρi

d [p] over the regions where we

are going to transmit the disruptive enhancements. Unfortunately this is only partially

true because the choices on the packets to be transmitted are associated with precinct

regions in the source images, while blending decisions ρ1
d [p] are formed on the samples

within each subband of the target view V ∗. This mismatch cause the actual policy

switching choices at client side to be different from the server’s expectations. However

while λ becomes smaller and smaller we expect to send more and more disruptive

enhancements in successive epochs and probably the client policy will switch to ρi
d [p],

even if it does not do so immediately.

To solve the optimization problem in the case of disruptive enhancement we started

from the computation of the overall policy switching penalty associated to a complete

change of the blending choices from ρ̊i
d [p] to ρi

d [p].
The distortion associated to the current blending choices , computed with the model

in equation (6.3) is:

ΔD∗ =
∑

d

∑
p

∑
i

(
ρ̊i

d [p]
)2 ·(Θi→∗

d [p] +
∑

b

W i
b→d [p] ·Di

b

[(W i
b→d

)−1
(p)
])
(6.9)

while the (higher) distortion associated with the switched policy is:

ΔD∗ =
∑

d

∑
p

∑
i

(
ρi

d [p]
)2 ·(Θi→∗

d [p] +
∑

b

W i
b→d [p] ·Di

b

[(W i
b→d

)−1
(p)
])
(6.10)

The policy switching penalty is given by the difference between (6.10) and (6.9).

By defining :

Δρi
d [p] =

(
ρi

d [p]
)2 − (ρ̊i

d [p]
)2

we can express the overall policy switching penalty associated with a wholesale

change of all blending weights as:

ΔD∗ =
∑

d

∑
p

∑
i

Δρi
d [p] ·

(
Θi→∗

d [p] +
∑

b

W i
b→d [p] ·Di

b

[(W i
b→d

)−1
(p)
])

︸ ︷︷ ︸
Φd[p]

(6.11)

The values of the subband distortions Di
b [k] in equation (6.11) are the ones corre-

sponding to the current number of layers q̊i
π for each precinct data-bin P i

π. The trans-

mission choices at server side are made on whole packets corresponding to the quality

layers of the precincts and we need to distribute the overall switching penalty between

the different precincts in the source images. Unfortunately, there is no perfect way to

do this, since blending weights are assigned on the samples in the subbands of V ∗,
rather than on the precincts of V i. Nevertheless, a good distribution can be achieved

110 Chapter 6. Server policies

by distributing ΔD∗ is on the basis of the distortion weights, (ρi
d [p])

2
W i

b→d [p], which

would apply if the policy switch took place. This associates the policy switching

penalty with those source precincts whose distortion impacts the synthesized view

most, and these are the ones for which disruptive enhancements are likely to be sent,

if at all.

The terms Φd [p] in in equation (6.11) represent the total distortion penalty on sam-

ple p coming from all the subbands and the different source views. As previously

discussed the distortion on p coming only from a certain subband of one of the source

views can be computed by multiplying Φd [p] by the ratio between the distortion weight

of that subband and the sum of all the distortion weights. In fact we distribute the dis-

tortion between the various source view subbands using the same weights that are used

while calculating distortion, except with (ρi
d [p])

2
instead of (ρi

d [p])
2 − (ρ̊i

d [p])
2

We will denote with Φi
d,b [p] the distortion on sample p coming from subband b of

view i, that can be computed in the following way:

Φi
d,b [p] = Φd [p] · (ρi

d [p])
2
W i

b→d [p]∑
b′,i′
(
ρi′

d′ [p]
)2

W i′
b′→d [p]

The switching penalty coming from precinct P i
π of source view i can be computed

by summing up on all the codeblocks belonging to that precinct the Φi
d,b corresponding

to the samples that are mapped to these codeblocks.

Φi
π =

∑
β∈Pi

π

∑
d,p	

�
Wi

b(β)→d

�−1
(p)∈Bi

β

Φi
d,b [p]

Using this new notation ΔD∗ can be expressed as the sum of the switching penal-

ties coming from the different precincts in the various source views :

ΔD∗ =
∑

d

∑
p

Φd [p]

=
∑

d

∑
p

∑
i

∑
b

Φi
d,b [p]

=
∑

i

∑
π

Φi
π (6.12)

The additional distortion contribution given by Equation (6.12) must of course be

included in the total distortion only if disruptive enhancements are selected for precinct

P i
π. To compute the distortion gain associated with the disruptive enhancements for

a particular precinct we can use the same method we used for the reinforcing ones.

Following the discussion in Section 6.2 we can combine together the blending choices

and the warping coefficients for all the samples which get mapped to a certain sample

k into the operator

Ψi
b [k] =

∑
d,p	(Wi

b→d)
−1

(p)=k

(
ρi

d [p]
)2

W i
b→d [p]

6.3 Optimization of Disruptive Enhancements 111

As in the reinforcing case we denote with Ψi
β the sum of Ψi

b [k] over all the samples

in the codeblock:

Ψi
β =

∑
k∈Bi

β

Ψi
b(β) [k]

The operator Ψi
β is the same as Ψ̊i

β except for the fact that now we are using

the switched blending weights ρi
d [p] instead of the ones corresponding to the current

choices ρ̊i
d [p].

Let us consider the case of a disruptive enhancement that provides q quality layers

for precinct P i
π. The amount of data corresponding to this enhancement is Li

π,q−Li
π,̊qi

π

bytes. We can compute the distortion after the disruptive enhancement using the same

procedure we used for the reinforcing case:

Di
π,q =

∑
Bi

β∈Pi
π

Ψi
β ·Di

β,q

Again the definition for Di
π,q is identical to the one we give for D̊i

π,q in (6.8) except

that we replaced the blending choices with the switched ones.

The q quality layers transmitted for precinct P i
π will increase the number of avail-

able quality layers from q̊i
π to qi

π and the distortion gain is so given by Di
π,̊qi

π
− Di

π,q.

This gain is balanced by the switching penalty, and the total distortion change is given

by:

ΔDi
π =

(
Di

π,̊qi
π
− Di

π,qi
π

)
− Φi

π (6.13)

An important aspect of equation (6.13) is that the actual distortion gain is not nec-

essary positive. If the number of transmitted quality layers is too small the distortion

gain Di
π,qi

π
− Di

π,̊qi
π

can be smaller than the policy switching penalty Φi
π and ΔDi

π can

be smaller than zero. In this case there is no point in transmitting disruptive enhance-

ment for that precinct and we expect only reinforcing enhancements. In other words

ΔDi
π > 0 represent the condition under which the disruptive enhancement is expected

to cause policy switching at client side.

We can exploit equation (6.13) to find a new formulation for J∗ (λ) in the case of

a disruptive enhancement which assigns qi
π layers to precinct P i

π :

J i
π,qi

π
(λ) =

{
0, qi

π = q̊i
π

Φi
π +

(
Di

π,qi
π
− Di

π,̊qi
π

)
+ λ

(
Li

π,qi
π
− Li

π,̊qi
π

)
, q̊i

π > qi
π

The first case correspond to the case where we decided not to transmit any disrup-

tive enhancement, while the second one can be considered valid only when qi
π > q̊i

π is

sufficiently large to ensure that ΔDi
π > 0.

It is instructive to consider solutions to the problem

qi
π (λ) = argmin

qi
π≥q̊i

π

J i
π,qi

π
(λ) (6.14)

112 Chapter 6. Server policies

This problem can also be formulated in the following way:

qi
π (λ) = argmin

qi
π≥q̊i

π

[
λLi

π,qi
π
(λ) + D̄i

π,qi
π

]
where

D̄i
π,q =

{
Di

π,̊qi
π
− Φi

π, q = q̊i
π

Di
π,q, q > q̊i

π

Figure 6.6 shows a plot of D̄i
π,q vs. Li

π,q. Let Hi
π denote the convex hull of the(

Li
π,q, D̄

i
π,q

)
pairs. This is identified in Figure 6.6 as the effective convex hull. Follow-

ing the discussion at the end of Section 6.2, only those q which belong to Hi
π can arise

as solutions to equation (6.14). All points q > q̊i
π which belong to Hi

π must necessarily

satisfy the condition D̄i
π,q < D̄i

π,̊qi
π
, which is equivalent to Φi

π +
(

Di
π,qi

π
− Di

π,̊qi
π

)
< 0.

As a result, any qi
π (λ) > q̊i

π which is solution of equation (6.14) already satisfies the

condition required for the enhancement to be considered disruptive. As suggested by

Figure 6.6, for large policy switching penalties Φi
π, the first q > q̊i

π which belongs to
Hi

π can lie significantly beyond the point at which D̄i
π,q < D̄i

π,̊qi
π
. This increase the

probability that the assumption that the same policy switch will happen also at client

side is right.

6.4 Complete Server Solution
In the two previous section we described the methods to compute disruptive and rein-

forcing enhancements independently. The final missing element for the server image

transmission policy is how to combine together the two different types of enhance-

ments.

A critical point is that reinforcing enhancements are based on the assumption that

the blending weights ρi
d [p] will not change. This supposition means that there should

be no disruptive enhancements. A possible solution to this problem could be to start

from computing the disruptive enhancements, then recompute the blending weights

taking into account the new data from disruptive enhancements and finally compute

the reinforcing enhancements. These steps should be repeated for every value of λ
until a solution which satisfies the bandwidth constraint Lepoch is found. Even if this

approach is theoretically correct, the recomputation of the blending choices in each

iteration of the Lagrangian optimization is impractical in a real time system as the one

we are trying to build.

We instead follow a different approach: we simply take the maximum of the num-

ber of quality layers for each precinct qi
π(λ) computed with the two different proce-

dures, i.e. the values yielded by equations (6.8) and (6.14). qi
π(λ) is so given by:

qi
π (λ) = max

{
argmin

qi
π≥q̊i

π

[
λLi

π,qi
π
(λ) + D̄i

π,qi
π

]
, argmin

qi
π≥q̊i

π

[
λLi

π,qi
π

+ D̊i
π,q

]}
.

6.5 Geometry transmission policy 113

We then adjust λ with an outer loop until the constraint on the epoch size∑
i,π Li

π(λ) ≈ Lepoch is satisfied. This is correct because both the solutions to (6.8) and

(6.14) are non-increasing functions of λ, and so is also the maximum of the two.

This “max of solutions” policy tends to send somewhat more reinforcing enhance-

ments than might be involved in a truly optimal solution, which may be regarded as

a conservative position. The reason for this is that the reinforcing enhancement are

computed using the assumption that the blending weights will not change. In a really

optimal solution they should be recomputed after every disruptive step. In this case

some reinforcing enhancements will probably be dropped because after the change in

the blending weights due to the disruptive step the corresponding samples are no longer

used.

From a certain point of view this is a good aspect because, as previously explained,

we are not completely sure that the expected policy switch will really happen due to

the mixing of many contributions in the policy decision represented by equation (4.26).

Even if this policy does not give a truly optimal solution it is important to underline

that any sub-optimality introduced by this approach is limited by the size of the epoch

because the blending weights will be recomputed in the next epoch.

It is worth considering what happens when the client has very little or no cached

precinct data from previous interaction with the server. In this case, it should not be

relevant what initial blending weights ρ̊i
d [p] are assumed at the start of the epoch. To

check that this is the case, suppose firstly that ρ̊i
d [p] = ρi

d [p]. Then there will be no

disruptive enhancements, but reinforcing enhancements will deliver the most relevant

content to the client. If ρ̊i
d [p] �= ρi

d [p], we expect to find that the policy switching

penalties Φi
π of those precincts which contribute to the rendered view through the dis-

ruptive enchancements ρi
d [p] will be negative due to the terms Θi→∗

d [p] in equation

(6.11). This means that the epoch length limit Lepoch will be achieved even with very

large values for λ, for which disruptive enhancements can still arise from equation

(6.14). Reinforcing enhancements, however, are unlikely to be produced when λ is

very large. Again, therefore, the server will deliver the most relevant content to the

client.

6.5 Geometry transmission policy
The previous sections present a solution to the allocation of transmission resources be-

tween the different contributions to the texture information. Geometry information is

also represented as JPEG2000 scalable compressed greyscale images and the various

depth maps are combined together using the same distortion framework. Thus geome-

try transmission can be optimized independently using the same procedure we used for

the images. The final missing element is how to combine together the solutions found

for geometry and texture. The idea is to exploit the geometry dependent component in

the distortion formulation to understand how geometric distortion affects the rendered

image and to optimally subdivide the bandwidth between texture and geometry. This

solution does not take into account possible changes in the blending weights used for

the images due to geometry improvements, but as in the image case the suboptimality

114 Chapter 6. Server policies

introduced is limited by the fact that weights are periodically recomputed. The current

prototype application does not include this part of the server application, that is the

subject of the current research activity.

Chapter 7

Experimental results and performance
analysis

The experimental results obtained with the prototype application are presented in this

chapter. The first section is dedicated to the multiple view fusion procedure at client

side and will show how the distortion framework described in Chapter 4 is able to

select the most appropriate samples from the different views in order to use them to

reconstruct the final rendering. Section 7.2 will show some examples of reconstruction

of the scene geometry from the depth information. Section 7.3 will discuss the trans-

mission policy at server side and finally Section 7.4 contains a brief discussion of the

performances of the current prototype.

Four different models have been used in the experiments. Two of them, the Santa
Claus and Frog models have been obtained from real objects, while the other two

(Goku and GT Car) are synthetic 3D models. The Santa Claus statuette (Fig. 7.1a)

had been placed on the turntable of Figure 3.5 and 60 pictures of it spaced of 6 degrees

each have been taken. The passive reconstruction method described in [48] has been

used to reconstruct the geometry description from the pictures (Fig. 7.1b and 7.1c).

Finally the depth maps have been extracted from the reconstructed 3D model. Passive

reconstruction methods have a low accuracy compared with range cameras and this

model is particularly interesting to evaluate the effects of the geometry dependent terms

in the distortion framework. Note that the images used in the experiments are the real

pictures of the object on the turntable, not renderings of a textured model or other

synthetic data. This allows to obtain a photorealistic rendering even if the geometry

description is poor. In most of the experiments we used only 12 of the 60 available

views (see Figure 3.3), corresponding to a spacing of 30 degrees that is already enough

to have a complete scene description. The Frog dataset (Fig. 7.2) has been built with

the same procedure but compared to the Santa Claus it has a simpler geometry and less

texture details. It represents an “easier”object.

The Goku model instead is a synthetic model made of about 9000 triangles. The

views have been rendered at the resolution of 1024x768 pixels using the 3D Studio
MAX software. The dataset (shown in Figure 3.6) is made of 10 views, eight taken

around the object, a top view and a bottom one. Depth maps have also been exported

from the model for the same viewpoints as the images. This model has many details

116 Chapter 7. Experimental results and performance analysis

a) b) c)

Figure 7.1: Santa Claus: a) one view; b) the 3D model; c) simplified 3D model

a) b)

Figure 7.2: Frog: a) one view; b) the 3D model.

117

and the position of the two arms is interesting to evaluate the effects of holes and

occlusions. Finally the GT Car model (Fig. 7.4) is another synthetic model of 8300

triangles. It has a relatively simple geometry but a lot of texture details. For this model

we used only 8 views taken around it with the corresponding depth information.

a) b)

Figure 7.3: Goku cartoon character: a) one view; b) the 3D model.

a) b)

Figure 7.4: GT Car synthetic model: a) one view; b) the 3D model.

118 Chapter 7. Experimental results and performance analysis

Figure 7.5: Santa Claus: pictures V i, i = 0...3

7.1 View fusion experiments

Let us start from a simple case: the client holds four different views of the Santa Claus
model corresponding to views separated by 90◦. A high quality version of all the 4

images has been already transmitted to the client (the example pictures in Figure 7.5

shows the views at 0.8 bit per pixel corresponding to 78 KB for a 1024x768 image).

To clarify the representation of the blending choices in the following discussion every

image is also associated to a color, shown in the circle in the upper right corner of the

picture.

The user asks for the rendered view from the viewpoint of Figure 7.6a. This view

point does not correspond to any of the images available at client side. If we just

try to stitch the warping of the two closest view in the image domain we obtain se-

vere artefacts, as shown in Figure 7.6b. By moving to multi-resolution stitching we

can obtain better results. Figure 7.6c and 7.6d shows the results obtained by multi-

resolution stitching taking into account only the image distortion but not the geometry

and lighting dependent terms, i.e. following equations (4.24), (4.25) and (4.26). Fig-

ure 7.6c shows the blending choices of this policy1. Every sample on the shape of the

Santa Claus is coloured with the color corresponding to the source view from which it

has been taken. Multi-resolution stitching reduce the multiple views fusion artefacts;

however, the Santa Claus model has a high geometry uncertainty due mostly to recon-

struction errors (remember that it has been built using passive methods). This causes

misalignements in the various view warpings that leads to visible artefacts. The com-

plete distortion formulation of equation (4.36), including also the geometry-dependent

terms, leads to the blending choices depicted in Figure 7.6e. The final rendered view

is shown in Figure 7.6f. By comparing Figure 7.6c and Figure 7.6e it is possible to see

that in the second one more triangles are taken from the purple view that is the most

parallel to the user viewpoint. The resulting image quality is improved: the artefacts at

the bottom of the cloak have disappeared and the face is also rendered more accurately.

Figure 7.7 shows another example of the effects of the geometry dependent term.

This time we used the Frog model that is also a 3D reconstruction of a real object.

As in the previous case four images are available at the same bit-rate, but this time

1To clarify the figures, we select a single best stitching source for each triangle Δ∗
n, over all reso-

lutions. The more general formulation allows for different decisions to be made in each resolution, but

this would be very difficult to represent in the figures.

7.1 View fusion experiments 119

a) b)

c) d)

e) f)

Figure 7.6: Santa Claus: a) reference image; b) rendering with image domain stitch-
ing; c) and d) triangle choice and rendering resulting from equation (4.24); e) and f)
triangle choice and rendering resulting from equation (4.36).

120 Chapter 7. Experimental results and performance analysis

a) b)

c) d)

Figure 7.7: Frog: a) and b) rendering and triangle choice resulting from equation
(4.24); c) and d) rendering and triangle choice resulting from equation (4.36).

7.1 View fusion experiments 121

one of them (represented by the dark green colour) is very close to the desired view.

The stitching decisions based only on image compression distortion (using equation

(4.24)) are shown in Figure 7.7b. The resulting rendering is the one of Figure 7.7a

and shows some artefacts, for example on the right eye and in proximity of the neck.

In particular by comparing Figures 7.7a and 7.7b it is possible to see that this second

artefact lays exactly on the position corresponding to the transition between the light

green and dark green views, and in fact is the typical artefact appearing on the edge

between warpings that are not correctly aligned due to geometry inaccuracy. The high

geometric error on the frog model increases the effect of the geometry term in the full

distortion formulation of (4.36). This cause most of triangles to be taken from the

view which is more parallel to the viewer. If we use the complete model we obtain

the triangle selection shown in Figure 7.7d, where most of the samples are taken from

the dark green view (almost all except for the ones close to the upper right edge, that

correspond to the samples not visible in the dark green view). The resulting rendering,

shown in Figure 7.7c is not affected by the artefacts on the neck and eye of the image

of Figure 7.7a.

In most practical situation the user is randomly browsing the scene and when he

requires a new rendering there are various views already available at client side, but

while for some of them a good representation is available, for others only a few packet

have been transmitted and the quality is poor. In the following example the user is

looking at the GT Car model from the point of view of the images in the fourth column

of Figure 7.8. Two views are available at client side, image V 1, shown in the first

column, and image V 2, shown in the second column of the figure. At the beginning

only a small amount of data is available for both the images, the low quality version (at

0.025 bpp) of the two images are denoted with V 1′ (shown in Fig. 7.8a) and V 2′ (Fig.

7.8b). Figure 7.8c shows the stitching decision, where the samples are taken almost in

equal parts from V 1′and V 2′ since the image distortions are similar. The final rendered

image is shown in Figure 7.8d and as expected, having no good quality sources, the

quality is not satisfactory. Then, the server sends more information for view V 2, and a

good quality (0.4 bpp) version of it becomes available, denoted with V 2′′ and shown in

Figure 7.8f. The distortion associated to the samples of V 2 is now smaller and many

more samples in the final rendering are taken from it. The final rendered view, shown

in Figure 7.8h, exhibits significantly improved quality, since most of the samples are

taken from V 2′′ and the data from the low quality source view V 1′ is used only in a

few locations. Finally, if more data is received also for V 1, and a high quality version

of V 1, V 1′′ is available, the client computes a new set of stitching decisions, shown in

Figure 7.8m , that again are balanced between the two views. The new choice leads to

the rendered view shown in Figure 7.8n, with high quality details on the entire surface.

Another interesting example of the handling of images with different qualities is

shown in Figure 7.9, 7.10 and 7.11. It refers to a very common browsing configuration,

similar to the one depicted in Figure 6.4. The user has been looking at the scene from

the viewpoint of view V 1 (shown in Figure 7.9a and associated to the light green color).

Then he moves to a new viewpoint, corresponding to view V 2 (Figure 7.9b and 7.9c,

dark green). At the beginning not enough data is available for V 2 and most samples

are warped from V 1, as it is possible to see from Figure 7.10a. Figure 7.11a shows

122 Chapter 7. Experimental results and performance analysis

a) b) c) d)

e) f) g) h)

i) l) m) n)

Figure 7.8: Rendering example with the GT car model: a) and b) V 1′ and V 2
′
, each

at 0.025 bpp; c) and d) stitching decisions and rendered view based on V 1′and V 2′;
e) and f) V 1′ and V 2′′ at 0.025 and 0.4 bpp, respectively; g) and h) stitching decisions
and rendered view based on V 1′and V 2′′; i) and l) V 1′′ and V 2′′ , each at 0.4 bpp; m)
stitching decisions and rendered view based on V 1′′and V 2′′ .

a) V 1 b) V 2 at 0.0125bpp c) V 2 at 0.8bpp

Figure 7.9: Views of the Goku model used in the experiment

7.1 View fusion experiments 123

the corresponding rendering, most of the image is warped from V 1 and has a good

quality, only the leftmost samples that are not visible in V 1 are taken from the other

view and show a poor quality. As soon as more data is received for V 2 it is distortion is

reduced and more and more samples are taken from it. Figures 7.10b and 7.10c shows

how the blending choices progressively moves to V 2. The rendering corresponding to

the choices in Fig. 7.10c has already a good quality on the whole image (see Figure

7.11b). Finally, when the complete description of V 2 is available as expected most

samples are taken from it (Fig. 7.11d). This example shows clearly how the proposed

system can handle a real-time browsing of the scene. When the user requires a new

view the system firstly renders it by warping the previous ones and then progressively

moves to the new one as more data becomes available for it. Two key aspects are worth

being underlined. The first is that this approach allows to start rendering the required

views without waiting for any information from the server, thus avoiding one of the

biggest issues of the image transmission based systems described in Section 2.3. The

second is that, as clearly shown in Figure 7.10, the switch from the prediction obtained

from the already available view to the newly received one is a gradual process. The

system does not just wait for the new image and then replace the prediction with it, but

progressively takes more and more samples from the new view as soon as more data

for it becomes available starting from the ones in which the estimation of the distortion

in the warping is higher.

a) V 2 at 0.0125bpp b) V 2 at 0.05bpp c) V 2 at 0.2bpp d) V 2 at 0.8bpp

Figure 7.10: Blending choices with V 1 at 0.8bpp and V 2 at different bitrates

In all the previous examples we assumed that we were using the same blending

choices for all the subbands (resolution levels) or at least that the choices were quite

similar on the different subbands. In many cases the choices made in the different

subbands are similar but sometimes they can be also quite different. Figure 7.12 shows

a common browsing configuration with two views available at client side with the

same quality. If we look at the scene just in the middle of the two views (from V m),

as expected, the choices are the same in all the subbands, roughly the left part is taken

from V 1 and the right from V 2. Let us have a look at what happens if instead we look

at the scene from the viewpoint of V ∗, that is between the two views, but much closer

to V 2.

124 Chapter 7. Experimental results and performance analysis

a) b)

Figure 7.11: Rendering: a) V 1 at 0.8bpp and V 2 at 0.0125bpp, b) V 1 and V 2 at
0.8bpp.

�� ��
��

��

Figure 7.12: Overview of the browsing configuration, the required view V ∗ is closer
to V 2.

7.2 Geometry synthesis experiments 125

a) b) c) d)

Figure 7.13: Blending choices: a) LL at level 3, b) High frequencies at level 3, c)
High frequencies at level 2, d) High frequencies at level 1

Figure 7.13 shows the blending choices in the different subbands2, the dark green

samples are taken from V 1 and the light green ones from V 2. As expected the client

uses more samples from the closer view V 2, but while in the low frequency bands (Fig.

7.13a and 7.13b) there are still many samples taken from the farther view (about one

third), in the high frequency bands almost all the samples are taken from V 2, as it is

possible to see from Fig. 7.13c and 7.13d. This behaviour is justified by the expansive

warping operator from V 1 to V ∗. Small regions of V 1 are warped to larger ones in V ∗.
Low frequency information can be still warped from V 1, while the highest resolution

(frequency) components of V ∗ cannot be recovered at all from V 1, since they depend

upon high frequency components that does not exist in V 1, as explained in Section

4.4.2. The higher distortion associated to the high frequency subbands in V 1 is mostly

due to the hypothetical extra resolution subbands described in Section 4.4.2 and forces

the system to use V 2 for these subbands.

7.2 Geometry synthesis experiments
In the proposed remote visualization scheme we decided to represent the geometry

description as a set of depth maps. This allows a great flexibility in the interactive

transmission of the data, as described in Chapter 5. Scalable compression features can

be exploited to transmit only the information really relevant to the required rendering.

At the same time the use of depth maps introduces additional issues at client side.

During the interactive browsing different depth maps at different qualities representing

overlapping regions of the object are available and the client must reconstruct from

them a single geometry description. In this section some experimental results of this

procedure are shown.

For the first experiment the Goku model is used. The dataset is made of 10 views

V i and 10 depth maps Zi, eight of them are spaced 45◦ apart on a circle around the

2 As explained in Section 4.2 we forced the system the system to made the same choices on the three

high frequency subbands, so there is one map of the blending choices for the high frequencies at every

resolution level and one for the LL band at the deepest level.

126 Chapter 7. Experimental results and performance analysis

object, one is taken below and one above. Figure 3.6 shows the complete dataset at full

quality, while Figure 7.14 shows a couple of them at different quality levels3.

a) b) c) d)

Figure 7.14: Example of Goku view and depth images at different quality levels: a)
depth map Z1at 0.4 bpp b) depth map Z1at 0.025 bpp; c) view V 2at 0.4 bpp; d) image
V 2 at 0.025 bpp.

a) b) c)

Figure 7.15: Synthesized depth map Z∗: a) from 0.4 bpp source maps; b) from 0.05
bpp source maps; and c) from 0.025 bpp depth maps.

The client should exploit the information from all the different depth maps to re-

construct the geometry. Figure 7.15 shows an example of the results of this process.

Figure 7.15a shows the reconstructed depth map3 when all the Zi are available at 0.4

bpp. Since the reconstructed Z∗ takes contributions from multiple depth maps, its

quality is generally higher than that of any of the individual source depth maps; when

3In order to represent more clearly the accuracy of the reconstructed shape, the images of the depth

in this chapter shows the geometry reconstructed from the depth map and rendered without any tex-

ture. In Chapter 3 instead the depth information where shown directly with the brightness of the pixel

corresponding to the depth value.

7.2 Geometry synthesis experiments 127

the single sources are available at full quality this gain is limited, but by combining

more poor quality depth maps it is possible to obtain a reasonable quality one. This

is clear if we compare Figure 7.14b with 7.15c. Both of them correspond to a bit-rate

of 0.025 bpp, but while a single depth map at this bitrate is not enough for a good

representation, by combining several poor quality depth maps we can obtain the better

representation shown in Fig. 7.15c. That is because in many regions close to edges

or occlusions where compression artefacts corrupt the depth values we can exploit the

data from other depth maps where the same regions have a better representation (for

example samples on the shape’s edge in one Zi can be in the middle of the object in

other depth maps).

The depth maps fusion procedure is based on a minimum distortion criterion. Fig-

ure 7.16 shows how this framework is able to select the correct samples from the var-

ious sources by avoiding to take data with high distortion due to low bitrate compres-

sion or local expansion in the mapping from Zi to Z∗. It refers to the case where

all source depth maps are available at the same quality and the distortion-sensitive

synthesis procedure is principally responding to local expansion in the mapping from

different source depth maps to Z∗.
Figure 7.16a shows the result we would have if we just took for every sample the

depth map Zi→∗ closer to the viewpoint without any distortion considerations. Many

small details are missing, specially around the hair of the cartoon figure; The geometry

in Figure 7.16b, obtained using distortion information has a much better quality with

less artefacts.

a) b)

Figure 7.16: Detail of the synthesized depth map : a) Without distortion information,
b) Using distortion information

How to optimally distribute the transmission resources between geometry and tex-

ture will be the subject of future work, however before concluding the discussion of

the client view and geometry synthesis experiments it is interesting to have a look at

how the two different type of data affect the final rendered image. Figure 7.17 shows

the rendered images obtained using 8 views and 8 depth maps of the Goku model with

different quality levels. Figure 7.17a shows the rendered view obtained using good

quality views and depth maps (0.4 bpp for each V i and Zi). As expected the resulting

128 Chapter 7. Experimental results and performance analysis

a) b)

c) d)

Figure 7.17: Rendering of V ∗ obtained with: a) 0.4 bpp depth maps images; b) 0.025
bpp depth maps and 0.4 bpp images; c) 0.4 bpp depth maps and 0.025 bpp images;
and d) 0.025 bpp depth maps and images.

7.3 Server policy experiments 129

rendering is satisfactory. In Figure 7.17b the geometry information quality has been

reduced and every Zi is represented with only 0.025 bpp, while the images are still at

0.4bpp. The final rendered image is still fair even if some artefacts due to low quality

geometry are visible. For example the Goku’s face is stretched and he smiles more than

he should. Figure 7.17c shows the opposite case, with good quality (0.4 bpp) geometry

and highly compressed images (0.025 bpp). It corresponds to the same total amount

of bytes of Figure 7.17b, but differently allocated. By comparing the two figures it is

easy to see that in this case the results are worse and image compression artefacts are

clearly visible. This suggest that, probably, it is better to allocate more bandwidth to

the texture information. In Figure 7.17d the results with low quality images and geom-

etry are shown. As expected the resulting rendering is not very satisfactory. However,

by comparing it with Figure 7.17c the additional loss due to low quality geometry is

limited. The comparison between the two figures in the upper row and the two in

the lower suggests that the geometry impact is really relevant only when high quality

images are already available. This example suggests that assuming the availability of

coarse depth and view information at the client, a server should initially devote most

of its bandwidth to refining the available view images. Geometry refinements might be

sent only near the end of the progressive transmission. This conclusion agrees broadly

with the results of other works in the field such as [1]. However the correct balance

between geometry and texture depends on many different parameters and this simple

example cannot give a satisfactory answer to such a complex problem.

7.3 Server policy experiments

V 1 V 2 V ∗ V 3 V 4

Figure 7.18: Server policy experiment: available views V i and required view V ∗

To have an idea of how the server transmission system works let us start from a

simple example. As shown in Figure 7.18, four different views V 1, V 2, V 3 and V 4 of

the Goku model are available. The client has not still received any data from the server

and the user requires view V ∗, that is roughly in the middle between V 2 and V 3. In

this example the server is allowed to transmit up to 20 KB to the client. The plots of

Figure 7.19 show how the server distributes the available transmission budget between

the different views. As expected almost all the bandwidth is allocated to the two closer

views V 2 and V 3 that receive 8,3 KB and 10,8 KB respectively. By looking at the

sample selection choices at client side, it is possible to see that these two views are the

130 Chapter 7. Experimental results and performance analysis

ones used to reconstruct the left and right part of the required rendering. The data is

also quite balanced between the views on the left and right side as we can expect by

looking at the pictures.

Transmitted data

0
2000
4000
6000
8000

10000
12000

V1 V2 V3 V4
View

B
yt
es

Data subdivision

V3
54%

V2
42%

V1
4%

V4
0% V1

V2

V3

V4

Figure 7.19: Allocation of the data between the different images

The previous example shows the allocation of the data between different images,

but by using scalable compression techniques it is possible to select for transmission

not only the more suitable images but also the elements in every single image that are

more useful for the required views. The compressed datastreams corresponding to the

various subbands of every image are divided into codeblocks corresponding to the dif-

ferent spatial regions. The server application is able to recognize which ones are more

useful for the required rendering and to transmit more information for them. In the

example of Figure 7.20a the user has required a close-up view of the face of the Goku
cartoon character. Figure 7.20b shows the transmitted data for the front view relative

to the three high frequency subbands at decomposition level 2. This subband is divided

into 48 different codeblocks arranged on an 8 by 6 grid. Every codeblock corresponds

to a particular spatial region as represented by the picture applied on the bottom of the

plot. Every bar represents the amount of data transmitted for the codeblock that lays

directly under it. From the plot it is clear that the server transmit information only

for the codeblocks that are necessary for the required view and that the more a certain

codeblocks affects the requested image the more information is transmitted for it.

It is easy to guess which will be the optimal solution when no data is available at

client side. A more interesting problem is how the server should behave when some

data has already been transmitted to the client and the user requires a new view of

interest. The following example is a good starting point to understand the behaviour of

the system in this case: at server side three images of the Goku 3D model are available.

The first, denoted with Vf is taken in the front of the object, while the other two, Vl and

Vr are taken at the left and right side of it (they roughly correspond to the three central

views in Figure 7.18). The client has already received a small amount of data for the

two images Vl and Vr. In the example it is around 2KB for each view, corresponding to

0.02 bpp. No data for view Vf is available at client side. The geometry transmission is

still not included in the current server implementation, so we will assume that a good

geometry description is already available at client side. In this example the server can

7.3 Server policy experiments 131

0

200

400

600

800

1000

1200

Bytes

a) b)

Figure 7.20: Transmitted data in a close-up view: a) Required view, b) Transmitted
data

deliver up to 2048 bytes in each epoch.

The server is now facing the problem of how to distribute the available bandwidth

between the three views. The plots of Figure 7.21 and 7.22 and show the experimental

results obtained with the current prototype system. Figure 7.21 shows the subdivision

of the data between the different views and compare the results with the simple trans-

mission of Vf without exploiting the side views. The plot of 7.22 shows also the results

of the reinforcing step alone, of the disruptive one and the combined solution for the

first three epochs. To be more precise, the first group of columns of each epoch shows

the bytes which would have been sent if only the enforcing decision was taken into

account; the second one is about the disruptive decision only; the third one shows the

combined solution. As it is possible to see from the first group of columns in Figure

7.22, in the first epoch reinforcing enhancements will force the transmission of data

for the two side views because no data is available for the front one and so no samples

are taken from it. If all the full quality images were available the optimal choice would

be of course using just Vf that is perfectly aligned with the required rendering, and

the disruptive enhancement will force the transmission of data only for that view. The

plot confirms this intuition and in the second group of column most of the data is sent

on Vf . From the third group (referring to the combined solution) it is possible to see

that in the first two epochs disruptive enhancements turn larger than reinforcing ones,

but the system will continue to send data also for the two side views. This is because

in some precincts of Vf the additional data transmitted in this epoch will not decrease

the distortion enough to compensate the policy switching penalty Φi
π. But as soon as

132 Chapter 7. Experimental results and performance analysis

Bytes Sent

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 2 3 4 5 6 7

Epoch

B
yt

es

bytes on V

bytes on V

bytes on V

bytes on V only

total bytes

F

L

R

F

Figure 7.21: Bytes sent by the server in different epochs, shared among images.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

en
for

cin
g

dis
rup

tin
g

en
for

cin
g

dis
rup

tin
g

en
for

cin
g

dis
rup

tin
g

V
V
V

Epoch 1 Epoch 2 Epoch 3

co
mbin

ed

co
mbin

ed

co
mbin

ed

F

L

R

Figure 7.22: Bytes allocation between different views in the first three epochs.

7.3 Server policy experiments 133

more data is transmitted more and more samples are taken from the front view and

from epoch 3 the policy completely switches to Vf , which receives almost the totality

of the bytes spent by the server. For comparison purpose the plot of Figure 7.21 shows

also the case when one only image Vf is sent (represented by the light blue line). By

comparing the two curves it is clear that after some epochs the server delivers the same

data in the two cases. The gap between the light blue and dark blue curves is due to the

bytes which were sent at the beginning for Vl and Vr. Even if it seems that at the end

the system will take a bit longer to receive the complete description, the bytes “wasted”

at the beginning on the side views allow to obtain an acceptable rendering in epoch 1

and 2 even if not many bytes are available for VF yet. This is clear from the renderings

of the face in Figure 7.23, in the second epoch the results obtained with three views

have a much higher quality.

Figure 7.23 shows a detail of the rendered images in the in different epochs. It

compares the results obtained by just transmitting Vf (upper row) with the combined

use of the three views Vl, Vr and Vf (in the lower row). It shows clearly that the biggest

gain from the proposed approach can be obtained in the early epochs. In the first one it

is possible to have an acceptable estimation of Vf even if no data has been transmitted

for it. Also in the second epoch the visual result is much better with three views than

with only one, since Vl and Vr provide useful information. From epoch 3, the server

starts delivering almost all bytes for Vf in both cases, and more and more samples are

taken from it. In the last epochs Vl and Vr become useless and are discarded. That

example show clearly why the proposed approach is able to support an interactive

browsing experience by continuously supporting the user navigation by exploiting the

already transmitted data to render new views before enough information from closer

views has been transmitted.

�

������

�	

���

�

������

������ � 	
 � � �

Figure 7.23: Detail of Goku in different epochs.

Before closing the experimental results section, a final remark needs to be done: in

all the experiments the rendered images have been shown but no MSE or PSNR curves

have been provided. That is because in this framework PSNR curves do not give a

reasonable representation of the perceived image quality. The reason for this is that il-

lumination issues and view warping artefacts (translational shifts) due to imperfections

134 Chapter 7. Experimental results and performance analysis

PSNR = 24.8 db PSNR = 27.6 db

Figure 7.24: Unreliability of the PSNR measures in view warping experiments

in the geometry, introduce a large contribution to the MSE that does not correspond to

the visual quality of the image, as described in [10]. Figure 7.24 shows two versions

of the same view. The left one has been obtained by exploiting information from a

nearby high quality view, while the right one is just a poor quality version of the re-

quired view. Even if by looking at the pictures the left one has clearly a better quality,

the comparison with the original view gives a poor PSNR of just 24.8 db. The right

view has a better PSNR of 27.6 db even if its quality is clearly worse.

7.4 Performance analysis
The target of the proposed framework is the construction of an interactive real-time

browsing system for 3D scenes. To achieve this objective a very important requirement

is to build an application that is able to perform all the required computations at several

frames per second to follow the user interactive exploration of the scene. Even if the

current implementation of the system still does not achieve the required performance,

we will explain in this section why we think that a high performance implementation

of the proposed approach is possible.

7.4 Performance analysis 135

Distortion
computation

View
synthesis

View
warping

Wavelet
decomposition

JPEG2000
decompression

No

Yes

Rendering loop

Geometry
synthesis

JPEG2000
decompression

Texture data

New
Data?

Depth information

Figure 7.25: Overview of the client view synthesis procedure, only the steps in the
shaded area must be repeated at every iteration of the rendering loop.

7.4.1 Client performance analysis
The rendering procedure at client side (shown in Figure 7.25) is basically split into

three steps: the decompression and warping of the source views, the distortion compu-

tation and the synthesis of the final rendering.

The decompression of the source views needs to be performed only when new data

is received for a particular view (and only for that view), not for every iteration of

the rendering loop. As described in Section 3.4 the client application has a double

caching system. It stores the decompressed data in the rendering cache (usually di-

rectly in the video card memory) and asks for the decompression only if the data is

not present in the cache. The decompression system also works on a different thread,

i.e. the JPIP module can fill up the cache while the main client module is performing

the rendering of the required view 4. In the current implementation it is based on the

Kakadu JPEG2000 decoder that is an highly optimized application. For example it is

able to decompress a 1024x768 pixel image in just 0,06 seconds on a standard 3Ghz

desktop computer. Another useful feature, not exploited in the current implementation

of the system, is that JPEG2000 is based on the same wavelet transform we used for

the multi-resolution stitching, and it is possible to directly get the various wavelet sub-

bands instead of the complete image, thus avoiding to perform the successive wavelet

decomposition of the images. Anyway the wavelet decomposition of the source views

is another operation that needs to be performed only after the decompression and not

in every loop of the rendering procedure. JPEG2000 allows also to decompress the

4A synchronization system must be implemented to avoid that the rendering module reads invalid

data from the cache while the decompression system is writing on it.

136 Chapter 7. Experimental results and performance analysis

images at reduced resolution or only some regions of them, if we know that only a part

(or a certain resolution level) of an image is needed, it is possible to exploit this func-

tionality to reduce the computation time. However this opportunity is not exploited in

the current version of the system.

In the warping stage all the available views must be warped to the required view-

point and then decomposed using the wavelet transform into the resolution compo-

nents. In Section 5.1 we explained how it is possible to reconstruct a triangular mesh

from the available depth maps in order to exploit highly optimized texture mapping al-

gorithms or the hardware acceleration of the graphic card to perform this step very fast.

In fact it is not even necessary to warp all the information from the different views, but

only the part of it that is visible from the required viewpoint.

�

� ���

Figure 7.26: Contractive warping: There is no need to decompress and warp V i at
full resolution.

�

����

Figure 7.27: Expansive warping: V i has no information for the highest frequencies
in V ∗.

Another important aspect is that there is no need to decompress the source view

V i at the highest available resolution if the warping operator which maps V i to V ∗

is strongly contractive (see Figure 7.26), because the high frequency data associated

to the highest resolutions is useless in the much smaller warped version of the im-

age. Conversely, if the projection operator is strongly expansive (see Figure 7.27),

the source image will not have information on the highest resolutions (a small region

of the source image is mapped to a much larger one in the target rendering). In this

case there is no need to generate the highest resolution components Ri→∗
d , since these

should be close to 0. In other words it is possible to perform decompression and warp-

ing at reduced resolution. Since JPEG2000 offers the opportunity of performing the

7.4 Performance analysis 137

decompression of an image limited to a given region and resolution of interest, both

the decompression and warping stages can exploit this observations. More formally,

the complexity of this stage is roughly proportional to:∑
i

min
{∥∥Ri→∗∥∥ ,

∥∥R∗→i
∥∥} (7.1)

where the first term ‖Ri→∗‖ represent the area of the portion of V ∗ which is visible

from the source view V i (expressed in number of pixels, the red square on V ∗ in the

figures). When the warping operator is contractive this term is usually the smaller and

determines the computational time. The second term ‖R∗→i‖ denotes the number of

pixels in V i which are visible from V ∗ (the green square in the figures). This term is

instead small for strongly expansive reprojection, in which V i→∗ is synthesized only at

reduced resolution.

Admittedly, the complexity expression provided above does not account for re-

projections which contain both strongly expansive and strongly contractive elements.

However, it does tell us that the complexity associated with synthesizing V ∗ from a

large number of very close (and hence narrowly focused) source views is essentially

the same as the complexity of synthesizing V ∗ from a small number of far away (and

hence widely spread) source views, at least in the first stage. This means that the

complexity depends only on the size of the reconstructed view V ∗ and the degree of

overlap (or redundancy) between the relevant source views. In our present experimen-

tal implementation, we do not exploit the opportunity to perform reconstructions at

reduced resolution, on which the above expression is based. To achieve even better

performances it is also possible to directly discard all the views that are too far or with

a too wide angle with the required viewing direction.

In our implementation, that does not exploit the opportunity to perform reconstruc-

tions at reduced resolution and is in no way optimized, currently the warping step

consumes 2.7 seconds5 to reproject four source views at the resolution of 1024 x 768

onto a rendering window which also measures 1024 x 768. If instead we use an output

window of 512 x 384 we can perform the same operation in 1.9 s. The fact that we

are using just four source views derives from the exclusion of the farther views. For

example the GT Car dataset has 8 views and if we exclude the ones on the back (that

are useless for the current rendering), four views remain. These results looks quite un-

satisfactory, specially considering the performances of modern graphic cards. In part

the poor performances are due to the still unoptimized code, but another bottleneck

is the transfer of the texture information from the graphics card memory to the RAM

in order to use it later in the wavelet synthesis. There exist methods to perform the

wavelet transform directly on the graphics hardware, for example the ones described

in [56, 57]. By exploiting them it should possible to avoid the continue transfer of the

data in and out of the graphics card memory and to achieve higher performances.

5All the time measurements have been carried out using a standard desktop computer. The one used

in these experiments is a 3,4 Ghz Pentium IV with 1 Gb of RAM and an ATI X300 video card.

138 Chapter 7. Experimental results and performance analysis

Performance s ummary

0 2 4 6 8 10 12 14 16

1024x768

512x384

t (s ec)

Warping

Dis tortion computation

S ynthesis

Figure 7.28: Overview of the computational time requirement of the different steps.

As it is possible to see from the plot of Figure 7.28 in the current implementation

the second stage is the most critical from the computational point of view. However it

is also the stage that has been less optimized and offers the wider set of opportunities

to find a trade-off between the performances and the accuracy of the results. Basically

in this step the distortion and energy fields associated with each source view subband

are projected into the target resolution components using the weighting procedure de-

scribed in Section 4.3. The same observations we made for the previous step are still

valid: if the mapping is strongly contractive there is no need to include the contribution

from high-frequency source view subbands, while under strongly expansive mappings

no source view subband makes a significant contribution to the highest target resolu-

tion components. As in the previous case the overall complexity is dominated by the

size of the required rendering and by the degree of overlap between relevant source

views. Equation 7.1 is still valid also for this step: the total number of source views

and their original sizes instead are not relevant to the computational complexity. A

very important observation is that the smooth nature of the available subband distor-

tion fields suggests that this stage could be performed on a subsampled version of the

image. The computation of the distortion only on a subset of the image samples will of

course lead to a small loss in the accuracy of the sample selection procedure but allows

a great save in the computation time (the time is roughly proportional to the number of

samples). A final option to improve the distortion computation times is to simplify or

exclude some elements of the distortion model. For example if the object geometry is

simple the impact of holes is limited and it is possible to avoid to use the holes-related

term. However the subsampling offers a better trade-off between complexity and ac-

curacy. Again, our current implementation does not exploit these various opportunities

to reduce the computation time. After computing distortion information the blending

weights are computed by just taking the source view with the minimum distortion for

each sample (excluding the holes), a very simple step that has no relevant impact on the

performances. Reprojection of distortion and energy fields and computation of blend-

ing weights currently consume 10.1 s to reproject four source views at a resolution of

1024 x 768 on a window of 1024 x 768, and 2.5 s on a window of 512 x 384. As

expected the total time is proportional to the number of samples in the rendered view,

and by subsampling the distortion field is possible to achieve very good performances

(a 256 x 192 subsampled field can be computed in 0.7 s).

7.4 Performance analysis 139

The regularization procedure is also based on simple calculations and very fast. On

the subbands of the distortion field corresponding to a 1024x768 image every iteration

takes about 13 ms. For example a regularization with 5 iterations (that in most cases

is already satisfactory) can be performed in just 0.06 s and a 30 iterations one in just

0.32 s.

The final step is the synthesis of the stitched resolution components to form the

required rendering. This step requires just to copy the data into the subbands and the

computation of the wavelet transform. Highly optimized code based on the lifting

strategy can be leveraged for this computation. In the current implementation the syn-

thesis of the final rendering takes 0.8 s with four source views at a resolution of 1024 x

768 on a window with the same resolution and 0.2 s using a window with half the res-

olution (512 x 384). The synthesis is performed on the subbands of the final rendered

image and depends only on the resolution of the output image, not on the resolution

and number of the source ones. However the performances of other wavelet-based

software, such as scalable video decoders suggest that much better performances can

be achieved also in this step.

In the previous examples we assumed that geometry information were already

available at client side. If the geometry representation is given as a set of depth maps

it is also necessary to reconstruct the geometry from the received depth information.

The depth reconstruction is based on the same distortion based framework we used for

the images and all the complexity considerations previously made are still valid also

for the depth maps fusion.

The analysis provided above suggests that a careful implementation could poten-

tially operate at multiple frames per second, thus achieving the performances required

by an interactive browsing application.

Distortion
computation

Lagrangian
optimization

Geometry
warping

Figure 7.29: Overview of the server transmission policy computation.

7.4.2 Server performance analysis
Even if the distortion framework we used is the same, the computation procedure at

server side is different from the client one. The server does not need to render any view,

it just need to compute the distortion field and perform the optimization procedure.

Another fundamental difference is that while the client needs to perform the rendering

at interactive frame rates (several frames per second), the server just need to perform

the computation once every epoch, that usually correspond to a much longer time

interval (around 1 second). On the other side the server is also expected to be able

140 Chapter 7. Experimental results and performance analysis

to handle several clients at the same time. That means that even if it is usually a more

powerful computer compared to the client it must perform the computation in a much

shorter time than the epoch size.

The server still need to compute the warping between the various source views

and the required viewpoint: the distortion computation require the information on the

warping both to compute the warping coefficients in the image distortion term and for

the computation of the geometry-dependent term. The server instead does not need

to reproject the texture information (it does not synthesize any image). A standard

3D warping is made of two steps, the geometry projection and the texture mapping,

the server must perform only the first, that in the case of not too complex geometries

is also the fastest. All the discussion about warping only the visible information and

excluding the farther views made for the client remains valid also for the server.

The second step is the distortion field computation. As explained in Section 6.1

the server uses two different types of blending weights, one corresponding to the in-

formation transmitted to the client, used for the reinforcing enhancements and one cor-

responding to the full quality images, used to compute the disruptive enhancements.

While the first set must be recomputed at every epoch the second one must be re-

computed only when the required viewpoint changes. Every one of the two distortion

computations works exactly in the same way as the client one. All the complexity

consideration and the performance measurement made for the client can be extended

to the server. The key difference is that now the server needs only to made choices

on large compressed codeblocks instead of single samples and the subsampling of the

distortion field can be exploited with only a very small loss. This means that is also

possible to use higher sampling factors, working on blocks of 4x4 or even 8x8.

The final step at server side is instead the lagrangian optimization for the selection

of the packets that need to be transmitted. The computational time required for this

step depends not only on the resolution and number of views but also on compression

parameters such as the size of the codeblocks, that determine the number of available

packets. The current implementation of this procedure is still in an early stage and no

optimization at all has been carried out.

Even if the actual performances of the client and server prototype application are

not completely satisfactory, the discussion of the many possible optimization and ap-

proximation options leads to the firm belief that it is possible to build an optimized

version of the system that is able to operate at interactive frame rates.

Chapter 8

Conclusions

This thesis presents a completely new approach to the remote visualization of three

dimensional scenes that lays in the middle between image-based rendering techniques

and a standard 3D visualization system. The proposed scheme is based on the rep-

resentation of the scene as a set of views with the corresponding depth and allows

to exploit scalable compression and transmission techniques already used for remote

browsing of standard images in a three dimensional framework. In particular the scal-

ability features of JPEG2000 and the JPIP interactive transmission protocol have been

effectively exploited in order to transmit only the subset of the scene description re-

ally necessary for the required renderings. The great flexibility provided by these tools

has permitted to overcome some of the drawbacks of other remote browsing schemes,

such as the lack of random access to subsets of the data or the robustness to network

congestions and latencies.

In particular the proposed architecture, following the approach used in JPIP image

browsing, completely decouples the rendering at client side and the server transmission

policy: the client can perform the rendering at any time exploiting the already received

data (JPEG2000 allows to decompress the scene description from any subset of the

compressed datastream) without waiting for the information from the server. This

approach made the system particularly robust to network issues. The proposed scheme

also allows the server to make his own decision on the information that needs to be

transmitted, exploiting the knowledge on the data that have not been transmitted to the

client.

An effective solution to the very challenging issue of how to combine a set of

different views and depth maps into the rendering of a new, unknown view has been

proposed. The proposed approach starts by building a set of predictions of the required

view using 3D warping, then the problem of combining regions taken from the different

warped views has been addressed using a multi-resolution stitching algorithm based on

the wavelet transform. This procedure allows to preserve the high frequency content

and at the same time to avoid visible discontinuities between the regions coming from

different sources. The issue of selecting the best sources for the required rendering has

been solved by introducing a completely new distortion estimation framework. The

framework described in chapters 4 and 5 allows to estimate how the different sources

of distortion, such as data compression, geometry uncertainty and lighting issues affect

142 Chapter 8. Conclusions

the rendered image quality. It offers a straightforward way to select both the best source

to be used for every sample in the final rendering and the information that needs to be

transmitted from the server. Experimental tests has shown how this approach is able to

correctly select the source view for the various samples in the final rendering in many

different circumstances. The distortion-based stitching framework has been extended

to the depth information and effectively used to combine the different depth maps

together into a single three-dimensional representation of the scene.

The distortion framework has been used also to develop an optimization procedure

to select the information that need to be transmitted. In particular a two steps optimiza-

tion procedure has been developed. The server performs an enhancing step to decide

which elements provide the better improvement to the rendering obtained using the

current blending choices. At the same time a a disruptive step is performed to decide

which elements from better aligned but still not used views can be transmitted. Finally

the server combines the two solutions together. Experimental results have shown how

this approach, even theoretically sub-optimal, allows to allocate the available band-

width between the many different contributions to the scalably compressed views in a

very effective way.

A prototype of the system has been built and used to experimentally validate the

proposed approach. The application is still under development, but the performance

of the current prototype and a careful analysis of the computational requirements of

the different steps suggest that a real-time browsing system based on the proposed

approach is really feasible.

The proposed distortion framework allows to estimate the impact of the different

elements of the texture and geometry description on the rendered views and opens

the way to find a solution to the fundamental issue of the allocation of the available

bandwidth between texture and geometry description. A more complete version of

the server application is currently under development and will extend the optimization

algorithm including also geometry information, thus offering an interesting answer to

the fundamental issue of how to allocate the available bandwidth between texture and

geometry description.

Concluding, a novel approach to interactive remote visualization of 3D scenes has

been proposed. It extends the achievements obtained in the field of remote visualiza-

tion of standard images to remote 3D browsing.

Bibliography

[1] I. Cheng and A. Basu, “Reliability and judging fatigue reduction in 3d perceptual

quality,” in Proc. of 2nd Int. symposium on 3D Data Processing, Visualization
and Transmission, 3DPVT2004, IEEE, September 2004.

[2] D. Tian and G. AlRegib, “Fqm: a fast quality measure for efficient transmission

of textured 3d models,” in MULTIMEDIA ’04: Proceedings of the 12th annual
ACM international conference on Multimedia, (New York, NY, USA), pp. 684–

691, ACM Press, 2004.

[3] L. Balmelli, Rate-distortion optimal mesh simplification for communications.

PhD thesis, Ecole Polytechnique Federale de Lausanne, Switzerland, 2001.

[4] Y. Pan, I. Cheng, and A. Basu, “Quality metric for approximating subjective eval-

uation of 3-d objects,” IEEE Transactions on Multimedia, vol. 7, pp. 269– 279,

April 2005.

[5] H. Hoppe, “Progressive meshes,” Computer Graphics, vol. 30, pp. 99–108, 1996.

[6] S. Rusinkiewicz and M. Levoy, “QSplat: A multiresolution point rendering

system for large meshes,” in Siggraph 2000, Computer Graphics Proceedings
(K. Akeley, ed.), pp. 343–352, ACM Press / ACM SIGGRAPH / Addison Wesley

Longman, 2000.

[7] A. Khodakovsky, P. Schröder, and W. Sweldens, “Progressive geometry com-

pression,” in Siggraph 2000, Computer Graphics Proceedings (K. Akeley, ed.),

pp. 271–278, ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

[8] D. S. Taubman and M. W. Marcellin, JPEG2000 Image compression fundamen-
tals, standards and practice. Cambridge, United Kingdom: Kluwer Academic

Publisher, 2002.

[9] D. Taubman and R. Prandolini, “Architecture, philosophy and performance of

jpip: internet protocol standard for JPEG 2000,” in Int. Symp. Visual Comm. and
Image Proc., vol. 5150, pp. 649–663, IEEE, July 2003.

[10] P. Zanuttigh, N. Brusco, D. Taubman, and G. Cortelazzo, “Greedy non-linear ap-

proximation of the plenoptic function for interactive transmission of 3d scenes,”

in International Conference of Image Processing, ICIP05, (Genova, Italy),

September 2005.

144 Bibliography

[11] P. Zanuttigh, N. Brusco, D. Taubman, and G. Cortelazzo, “A novel framework for

the interactive transmission of 3d scenes,” Signal Processing: Image Communi-
cation, vol. 21, pp. 787–811, October 2006.

[12] P. Ramanathan, M. Kalman, and B. Girod, “Rate-distortion optimized streaming

of compressed light fields,” in Proc. of IEEE International Conference on Image
Processing, 2003 (ICIP’03), vol. 3, 2003.

[13] M. Garland and P. S. Heckbert, “Surface simplification using quadric error met-

rics,” in SIGGRAPH, pp. 209–216, August 1997.

[14] E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early

vision,” M. Landy and J. A. Movshon, (eds) Computational Models of Visual
Processing, 1991.

[15] H.-Y. Shum and S. B. Kang, “A review of image-based rendering techniques,”

in IEEE/SPIE Visual Communications and Image Processing (VCIP), (Perth),

pp. 2–13, June 2000.

[16] M. Levoy and P. Hanrahan, “Light field rendering,” in SIGGRAPH ’96: Pro-
ceedings of the 23rd annual conference on Computer graphics and interactive
techniques, (New York, NY, USA), pp. 31–42, ACM Press, 1996.

[17] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,”

in SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, (New York, NY, USA), pp. 43–54, ACM

Press, 1996.

[18] H.-Y. Shum and L.-W. He, “Rendering with concentric mosaics,” in SIGGRAPH
’99: Proceedings of the 26th annual conference on Computer graphics and in-
teractive techniques, (New York, NY, USA), pp. 299–306, ACM Press/Addison-

Wesley Publishing Co., 1999.

[19] S. E. Chen, “QuickTime VR — an image-based approach to virtual environment

navigation,” Computer Graphics, vol. 29, pp. 29–38, 1995.

[20] G. M. C. F. Aru, P. Zanuttigh, “Visualization of panoramic images over the inter-

net,” in in Digital Heritage (L. W. MacDonald, ed.), ch. 17, pp. 467–488, Berlin,

Germany: Springer, May 2006.

[21] S. E. Chen and L. Williams, “View interpolation for image synthesis,” in SIG-
GRAPH ’93: Proceedings of the 20th annual conference on Computer graphics
and interactive techniques, (New York, NY, USA), pp. 279–288, ACM Press,

1993.

[22] S. M. Seitz and C. R. Dyer, “View morphing,” in SIGGRAPH ’96: Proceedings
of the 23rd annual conference on Computer graphics and interactive techniques,

(New York, NY, USA), pp. 21–30, ACM Press, 1996.

Bibliography 145

[23] P. Rademacher and G. Bishop, “Multiple-center-of-projection images,” in Proc.
ACM Annu. Computer Graphics Conf., (Orlando, FL), pp. 199–206, July 1998.

[24] J. Shade, S. Gortler, L. wei He, and R. Szeliski, “Layered depth images,” in SIG-
GRAPH ’98: Proceedings of the 25th annual conference on Computer graphics
and interactive techniques, (New York, NY, USA), pp. 231–242, ACM Press,

1998.

[25] L. McMillan, “Computing visibility without depth,” tech. rep., University of

North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1995.

[26] P. E. Debevec, C. J. Taylor, and J. Malik, “Modeling and rendering architecture

from photographs: A hybrid geometry- and image-based approach,” Computer
Graphics, vol. 30, pp. 11–20, 1996.

[27] P. E. Debevec, G. Borshukov, and Y. Yu, “Efficient view-dependent image-based

rendering with projective texture-mapping,” in Proc. 9th Eurographics Rendering
Workshop, (Vienna, Austria), p. 14, June 1998.

[28] G. Cortelazzo and P. Zanuttigh, “Predictive image compression for interactive re-

mote visualization,” in Proceedings of the 3rd International Symposium on Image
and Signal Processing and Analysis (ISPA2003), (Rome), pp. 168–173, 2003.

[29] P. Zanuttigh, G. Michieletto, and G. M. Cortelazzo, “A predictive compression

method for remote visualization of 3d models,” in Proceedings of International
Workshop VLBV05, (Cagliari, Italy), September 2005.

[30] K. Engel, O. Sommer, and T. Ertl, “A framework for interactive hardware accel-

erated remote 3d-visualization,” in Proc. VisSym Joint Eurographics-IEEE TCVG
Symposium on visualization, pp. 167–177, 2000.

[31] M. Feißt and A. Christ, “Dynamically optimised 3d (virtual reality) data trans-

mission for mobile devices,” in Proceedings 3DPVT 2004, pp. 270–274, 2004.

[32] K. Tsoi and E. Gröller, “Adaptive visualization over the internet.” TR-186-2-00-

21, November 2000.

[33] M. Bailey and C. Michaels, “VizWiz: a Java applet for interactive 3d scientific

visualization on the web,” in Proceedings IEEE Visualization ’97, pp. 261–267,

1997.

[34] M. Levoy, “Polygon-Assisted JPEG and MPEG compression of synthetic im-

ages,” in Proceedings of SIG-GRAPH 95, pp. 21–28, 1995.

[35] I. Yoon and U. Neumann, “Web-based remote rendering with IBRAC (image-

based acceleration and compression),” in Proceedings of EUROGRAPHICS
2000, vol. 19, (Oxford (UK)), Blackell Publishers, 2000.

146 Bibliography

[36] P. Bao and D. Gourley, “Real-time rendering of 3d scenes using subband 3d warp-

ing,” IEEE Transactions on Multimedia, vol. 6, 2004.

[37] W. R. Mark, L. McMillan, and G. Bishop, “Post-rendering 3d warping,” in Pro-
ceedings of the 1997 symposium on Interactive 3D graphics, 1997.

[38] A. Watt, 3D Computer Graphics. Reading (MA): Addison-Wesley, 2000.

[39] G. Wolberg, Digital Image Warping. Los Alamitos (CA): IEEE Computer Society

Press, 1990.

[40] R. Krishnamurthy, B. B. Chai, H. Tao, and S. Sethuraman, “Compression and

transmission of depth maps for image-based rendering,” in Proceedings IEEE
Int. Conf. on Image Processing (ICIP01), 2001.

[41] P. Bao, D. Gourlay, and Y. Li, “Context modeling based depth image compression

for distributed virtual environment,” in Proceedings International Conference on
Cyberworlds, vol. 00, 2003.

[42] B. B. Chai, S. Sethuraman, and H. S. Sawhney, “A depth map representation

for real-time transmission and view-based rendering of a dynamic 3d scene,” in

Proceedings First International Symposium on 3D Data Processing Visualization
and Transmission, (Padova (Italy)), pp. 107–114, June 2002.

[43] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An overview of

JPEG-2000,” in Data Compression Conference, pp. 523–544, 2000.

[44] D. Taubman, “High performance scalable image compression with EBCOT,”

IEEE Trans. Image Proc., vol. 9, pp. 1158–1170, July 2000.

[45] ISO/IEC 15444-2, “Information technology – JPEG 2000 image coding system

– Part 2: Extensions,” 2002.

[46] “http://www.kakadusoftware.com.”

[47] N. Brusco, Wide-range reconstruction of 3d scenes with passive and active meth-
ods. Universitá degli studi di Padova: PhD thesis, 2005.

[48] N. Brusco, L. Ballan, and G. M. Cortelazzo, “Passive reconstruction of high qual-

ity textured 3d models of works of art,” in 6th international symposium on virtual
reality, archeology and cultural heritage VAST05, (Pisa, Italy), November 2005.

[49] “http://www.opengl.org/resources/libraries/glut/.”

[50] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cam-

bridge, United Kingdom: Cambridge University Press, 2000.

[51] J. D. Foley, A. V. Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics Prin-
ciples and Practice. Addison-Wesley, 1995.

Bibliography 147

[52] P. J. Burt and E. H. Adelson, “A Multiresolution Spline With Application to

Image Mosaics,” ACM Transactions on Graphics, vol. 2, pp. 217–236, October

1983.

[53] D. S. Taubman, “Localized distortion estimation from already compressed

jpeg2000 images,” in International Conference of Image Processing, ICIP06,

(Atlanta, USA), October 2006.

[54] A. Secker and D. Taubman, “Highly scalable video compression with scalable

motion coding,” IEEE Transactions on Image Processing, vol. 13, pp. 1029–

1041, Aug 2004.

[55] W. Sweldens, “The lifting scheme: A custom-design construction of biorthogonal

wavelets,” Appl. Comput. Harmon. Anal., vol. 3, no. 2, pp. 186–200, 1996.

[56] J. Wang, T. T. Wong, P. A. Heng, and C. S. Leung, “Discrete wavelet transform

on gpu,” in Proceedings of ACM Workshop on General Purpose Computing on
Graphics Processors, (Los Angeles, USA), pp. C–41, August 2004.

[57] M. Hopf and T. Ertl, “Hardware accelerated wavelet transformations,” in Proc. of
Symposium on Visualization VisSym ’00. EG/IEEE TCVG, May 2000.

