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Abstract This paper proposes a novel human-computer interaction system
exploiting gesture recognition. It is based on the combined usage of an head-
mounted display and a multi-modal sensor setup including also a depth cam-
era. The depth information is used both to seamlessly include augmented real-
ity elements into the real world and as input for a novel gesture-based interface.
Reliable gesture recognition is obtained through a real-time algorithm exploit-
ing novel feature descriptors arranged in a multi-dimensional structure fed to
an SVM classifier. The system has been tested with various augmented real-
ity applications including an innovative human-computer interaction scheme
where virtual windows can be arranged into the real world observed by the
user.

Keywords Head mounted display · gesture recognition · human-computer
interface · augmented reality · depth data.

1 Introduction

Human-computer interaction has been based on the traditional interface with
monitor, keyboard and mouse for a long time. Various virtual reality schemes
have been proposed in order to replace this model, but being excluded from
the real world to enter the virtual environment is often a huge limitation.
Furthermore gloves and other input devices exploited for this task have proved
to be cumbersome to use. This work proposes an innovative solution for the
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interaction with the computer allowing a natural interaction with the machine
without being excluded from the real world.

From the visualization point of view this is solved by using an augmented
reality system capable to insert the computer interface elements in the rep-
resentation of the real 3D world in front of the user. This challenging target
is achieved by combining the data acquired by a standard video camera with
the 3D information from a Time-of-Flight (ToF) sensor. The calibration of the
devices and the 3D information coming from the ToF sensor allows to properly
insert the virtual elements into the real world as if they were objects in the
3D space and not just graphics elements overlaid over the video stream. This
approach combined with the usage of a stereoscopic head-mounted visualiza-
tion system enables the presentation to the user a single 3D world containing
both the real and virtual elements.

The proposed approach aims at improving the interaction part using a fast
hand gesture recognition algorithm to control the device interface. The 3D
information from the ToF camera is a very valuable representation that helps
in this task. Most approaches for hand gesture recognition from depth rely
on a setup where the camera has a fixed position facing towards the user, in
our case the camera is attached to the user head thus making the problem
more challenging. The proposed gesture recognition algorithm can work in
both camera setups, but has been tuned for the ego-vision environment.

This paper presents a novel complete system that allows a more natural
interaction with the real world by exploiting data from multiple sensors: a
ToF sensor, a standard video camera and an inertial sensor. This allows both
acquiring the colored three-dimensional representation of the scene in front
of the user and having an immediate description of its relative motion. The
interaction is made possible by an advanced gesture recognition system that
exploits a computing inexpensive real-time approach based on depth data
and targeted to setups where the camera is head-mounted and can move.
This module has been firstly presented in [24], in this work we extend the
previous conference publication by including the gesture recognition module
into a complete AR system.

More in detail on the gesture recognition module, it exploits two new sets
of ad-hoc features, one representing the local curvature along the hand contour
and the other the thickness of the hand region close to each contour point.
An efficient solution for the construction of large synthetic training datasets is
also presented and experimental results demonstrate that training on synthetic
data can be sufficient for a reliable gesture classification with Support Vector
Machines (SVM), thus avoiding the cumbersome construction of large real data
training datasets. Finally, a new kind of 3D structure for the combination of
multiple feature descriptors is proposed and proved to generalize well to the
real data case.

Some examples applications of the proposed system are presented, with a
particular focus on the presentation of an Augmented Reality (AR) system
capable to seamlessly include a computer interface into the real world.
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The paper is organized in the following way: Section 2 presents the related
works, then Section 3 presents the architecture of the proposed system. Section
4 presents the gesture recognition module. Some applications of the proposed
system are shown in Section 5. Section 6 contains the experimental results and
finally Section 7 draws the conclusions.

2 Related works

Multi-modal human computer interaction is an inter-disciplinary research ex-
ploiting results from different fields from human-computer interaction to com-
puter vision, computer graphics and many others. A complete review of the
field can be found in [15], in this section we will focus on the works more
related to the architecture of the proposed system. There has been a very few
proposal of complete systems containing all the elements of this work but the
various building blocks have been widely studied.

A complete system containing both the visualization and interaction mod-
ule is presented in [14]. This work analyzes in detail the full pipeline required
for the user interaction but the proposed input modalities are based on head
movements and speech only. Hand gesture recognition is instead exploited in
[9]. This system uses an RGB camera with three single-point 3D sensors to
acquire the hand position that is then used in AR applications. The hand is
identified from the single point 3D measures but the hand shape analysis used
for gesture recognition is based on color data alone, thus limiting the accuracy
of the gesture recognition module. Another system combining gesture recogni-
tion and AR is [3]. In this case the 3D sensor used for hand gesture recognition
is not wearable but is placed on a tripod in front of the user, a choice that
limits the applicability of the method to small office environments. In [21]
and [22] a touch-less interactive augmented reality system based on a wear-
able device is proposed. A dynamic hands and feet gesture recognition system
based on template matching is proposed and used to allow the interaction with
augmented reality games.

Many different augmented reality systems have been proposed in the lit-
erature. A very good review of the first attempts to combine virtual and real
elements into AR systems is contained in [2], while a more recent review of the
advances in this field is [8]. Most of these works focus on the estimation of the
user position and head orientation or on the positioning of the virtual elements
but do not present a complete system including also the input module.

An important aspect for systems like the considered one is the joint cali-
bration of the various acquisition and visualization devices. The works of [43]
and [1] address the calibration of vision systems with inertial sensors.

Hand gesture recognition is a widely studied problem. The recent introduc-
tion of depth cameras has opened the way to many new approaches exploiting
this kind of information but most approaches focus on the desktop setup with
a fixed depth camera facing the user. Several approaches follow the standard
pipeline consisting in firstly extracting a set of relevant features from the depth
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data and then applying a suitable machine-learning technique in order to rec-
ognize the performed gesture. An example of this family is the approach of
[18] that exploits silhouette and cell occupancy features to build a shape de-
scriptor that is then fed to a classifier based on action graphs. The method
of [38] rely on volumetric shape descriptors and on Support Vector Machines
(SVM) in order to recognize dynamic gestures from depth sequences. Volu-
metric descriptors and SVM are used in order to get the hand pose in [35].
Hand pose estimation from depth data is a widely studied problem, see [34]
for a complete review.

In the proposed approach we instead focused on the direct recognition of
the gestures without getting the pose and by working on a single frame. This
problem has been tackled by comparing the histograms of the distance of hand
edge points from the hand center in order to recognize the gestures in various
works like [31], [30] and [11]. This technique leads to good results even if a pre-
cise alignment of the histograms is needed for optimal performances. To solve
this problem (and hand segmentation) [31] and [30] use a black bracelet but
this is a usability limitation. Different types of features can also be combined
together as in the approach of [12]. Among the various features exploited in
[12] there is also the curvature of the hand contour, but notice that the multi-
resolution algorithm used for the descriptors extraction in this work is different
and more computationally demanding than the one proposed in this paper.
The approach has been extended with different classification and feature se-
lection schemes [26] and by exploiting the data from a LeapMotion sensor [23].
The approach of [29] exploits a convex shape decomposition method in order
to recognize the palm, fingertips and hand skeleton and then use this data for
gesture recognition. In [16] the hand point cloud is described using Viewpoint
Feature Histograms (VFH) and Hidden Markov Models are used for the clas-
sification of static gestures while dynamic data is handled with Dynamic Time
Warping (DTW). A novel descriptor representing the local distribution of 3D
samples acquired by the depth sensor is proposed in [41] and exploited for hand
gesture recognition. Another recent work [10] exploits a Random Forest Clas-
sifier trained on synthetic data to recognize the various hand parts and then
uses this information for hand gesture recognition. Notice that the estimation
of the pose, skeleton or the recognition of hands parts is very useful for ges-
ture recognition, but approaches exploiting these representations are typically
more complex and computationally demanding. For the considered ego-vision
system where a simple, fast and robust approach is needed we preferred a
solution directly recognizing the gesture without going through intermediate
representations.

The use of depth cameras has also been studied in the field of ego-vision,
where the sensor is typically mounted over the user head. The approach of
[33] consider both the problem of the hand segmentation in ego-vision systems
and of gesture recognition, even if the main focus of the work is on the first
task. For the segmentation a Random Forest classifier is used on a superpixel
segmentation, while the gestures are classified using Exemplar SVMs. Another
approach for hand gesture recognition with an head mounted camera has been



Head-Mounted Gesture Controlled Interface for Human-Computer Interaction 5

RGBD 
Camera

Acquisition Loop

Callback

Start

Target
Elaboration

Input

Data
OpenGL Renderer

Input OutputElaboration

IMU
Sensor

Fig. 1 Block diagram showing the main components of the proposed system.

presented in [25]. This approach is based on the analysis of a skeleton extracted
from the hand but the experimental evaluation is limited to 3 static gestures
and 5 dynamic ones. The recognition of dynamic gestures has been considered
in [5], that deals also with the problem of removing the camera motion in ego-
vision systems. The work of [37] deals with action recognition from a wearable
depth camera. This work exploits a model that automatically mines discrim-
inative states of the considered actions exploiting Multiple Kernel Learning.
The problem of hand detection and segmentation in ego-centric vision has in-
stead been considered in [6]. Another approach dealing with hand detection
and tracking in ego-centric data is [4]. Hand detection and action recognition
using the data from Google glasses is considered in [17]. Finally hand pose
estimation using a wearable RGB-D camera is the topic of [32] that exploits
synthetic training examples and multi-class rejection-cascade classifiers.

3 System Architecture

The proposed system extends the classic Head Mounted Display (HMD) paradigm
by introducing additional sensors and functionalities enabling gesture recogni-
tion and augmented reality features. The overall architecture is shown in Fig.
1: the system can be divided into three main blocks, i.e., the 3D acquisition
subsystem, the processing block and finally the visualization unit. Fig. 2 shows
the employed hardware setup: the main elements are a high resolution monitor
with a pair of aspheric lenses, a low-cost inertial measurement unit (IMU) and
a RGB-D camera with a wide angle lens for the RGB optics.

3.1 3D acquisition subsystem

The data acquisition module combines the data from the 3 inputs (RGB, ToF
and IMU) and provides them to the processing module. The inertial sensor
is a SparkFun Razor 9-DOF IMU that operates at a frequency of 50Hz and
features a 3 axis accelerometer, a 3 axis magnetometer and a 3 axis gyroscope.
The raw signals are filtered by using the Direction Cosine Matrix (DCM)
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Fig. 2 Hardware setup of the proposed system.

algorithm [28] that takes care of reducing sensor noise and numerical errors.
In particular the magnetometer has been calibrated in its final position in the
complete setup, in order to account for the magnetic distortions of the other
components.

The color and depth data are provided by a Creative Senz3D RGB-D cam-
era. This camera performs well for short-range depth acquisition, but has a
limited depth range and an high noise level in the far range. Even so, the very
compact size and low weight of the device makes it suited for head mounted
applications. Notice that a possible alternative is to use a stereoscopic setup,
but the two cameras together with the Senz3D would increase the setup com-
plexity and weight. Removing the depth camera and computing the depth
map from the stereo setup is instead more computationally expensive and al-
low to obtain a less accurate depth map. Another limitation of the camera
is the field of view (around 60 degrees). In order to solve this issue a wide
angle lens is used for the color data, thus increasing the field of view to 120
degrees. The color and depth cameras have then been jointly calibrated using
the calibration algorithm of [42].

3.2 Processing module

The processing module deals with multiple tasks. It is composed of a coordi-
nator and several application components. The various tasks run on separate
processes and are completely asynchronous in order to make the system fast
and robust and to open the way for future improvements. The coordinator
initializes and set up the whole system, controls the various input and out-
put modules and keeps track of failures and performance issues. It collects
and synchronize all the acquired data and make them available to the various
components. The application components process the incoming data and ex-
tract the required information. Among them a key component is the gesture
recognition algorithm that will be described in detail in Section 4. The pro-
cessing module also acts as a bridge for the various applications that require
augmented reality elements (e.g., web-pages, images, videos, or applications
screen allowing the interaction with the real objects) and provides the corre-
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sponding data to the visualization module in order to add them to the rendered
image. It also collects the output of the gesture recognition module and uses
it to control the various applications. Finally it contains also the game engine
required by gaming applications, e.g., the demo of Section 5.

3.3 Visualization module

The visualization module has the task of presenting to the user the augmented
reality environment, that is a combination of virtual and real elements. The
rendering of the virtual elements is performed with a standard OpenGL engine.
As shown by Fig. 3 the main rendering loop works in the following way: the
input data (color, depth and IMU information) is loaded and used to generate a
textured point cloud in the user’s 3D coordinate system. Then the point cloud
is rendered two times from the viewpoints of the two eyes (the visualization
and input system are calibrated) taking into account also the aspheric lens
distortion. Finally the augmented reality elements are added to the rendering
of the real world. The proposed rendering engine is very fast (the latency is
about 10ms) and by running on a separate thread it ensures that there is no
delay in the images shown to the user.

Fig. 3 Rendering pipeline exploited by the visualization system.

This procedure presents some interesting elements not present in standard
approaches. Firstly the view of the real world is acquired from the RGB color
camera, but notice that, since a single camera is available, 3D information is
required to generate the two virtual views that are shown to the two eyes.
The construction of the two virtual views needs to be performed carefully in
order to obtain a satisfactory visual quality as discussed in several studies on
stereoscopic image quality [20,39]. As previously introduced, the calibration
information is used to create a colored point cloud that is then rendered from
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the viewpoints of the two eyes (an hole-filling algorithm is used to fill the re-
gions eventually occluded from the viewpoints of one of the eyes). A critical
issue is that many applications require the 3D visualization of the complete
world around and the depth camera has a limited range of around 5m. The
rendering algorithm assigns to all the points without a valid depth value a
fixed canonical value and these elements are then rendered as a flat surface,
while objects actually measured by the depth camera results in a rendered 3D
shape. This trick has proved to produce a good visual quality with only barely
noticeable artifacts. Another critical point is that the lenses that focus the dis-
play at the short distance from the eye of the user, introduce a large geometric
distortion. In order to compensate it, this distortion component needs to be
firstly estimated. For this purpose a setup composed by a high-quality DSLR
(Digital Single-Lens Reflex) camera seeing through the lens towards a small
checkerboard has been used. Firstly the camera focus and zoom are fixed to
achieve the best image quality for the small checkerboard. Then the camera
is unmounted and, keeping the same settings, separately calibrated with a
larger checkerboard using the approach of [42]. Finally the lens is placed back
in position and the pictures of the small checkerboard seen through the tar-
get lens are acquired and undistorted using the camera calibration data. This
process allowed to separate the lens distortion from the distortion component
due to the camera: on the undistorted images, the only distortion remaining
is the one introduced by the lenses. It is finally possible to apply again the
checkerboard calibration algorithm of [42] finding the lens distortion parame-
ters. These values are used to pre-distort the displayed image, that once saw
through the lenses become undistorted and thus more realistic for the user.

Acquisition with 

camera alone

Camera and lens

setup

Calibrate camera 

alone

Acquire with 

camera and lens

Lens 

calibration

Fig. 4 Flowchart of the procedure used for the calibration of the optical system.
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4 Gesture Recognition Module

In order to allow a natural interaction between the user and the virtual envi-
ronment we included a gesture interface where the user can interact with the
system with the bare hand without using any tool. This task is very challeng-
ing using color data alone, but recent research has demonstrated that depth
data allow a very reliable solution [40]. Furthermore depth data directly pro-
vide the position of the hand in 3D space, a fundamental information for the
applications of Section 5. The considered setup is quite challenging since the
head-mounted camera is moving and furthermore the hand can easily move
out of the field of view. For these reasons we decided to exploit a single frame
approach that is independent from the camera position and motion and does
not require a continuous tracking of the hand. In this way if the camera gets
out of the field of view the gesture recognition can restart as soon as the hand
gets back in the visible region.

The proposed approach encompass three main steps as depicted in Fig. 5. In
the first step the hand is recognized and segmented from the rest of the scene.
Then two sets of relevant features are extracted from the silhouette of the hand
on the depth map. The first set of features captures the local curvature of the
hand contour, while the second exploits a distance transform representation
to get the thickness of the hand region corresponding to each contour point.
Finally, the extracted features are used to build a three-dimensional vector
representation that is fed to a classifier based on Support Vector Machines
(SVM) trained exploiting a synthetic dataset.

Extraction of 
DST features

Hand 
Segmentation

Depth 
data

Hand 
Silhouette

Extraction of 
curvature features

3D features 
volume

SVM classifierRecognized 
Gesture

Fig. 5 Pipeline of the proposed hand gesture recognition approach.

4.1 Hand identification and segmentation

The first step consists in the extraction of the samples corresponding to the
hand region from the depth map. The process assumes that the hand is close
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to the camera and starts with a thresholding of the depth map that removes all
the samples with a distance bigger than a pre-defined threshold that depends
on the selected application (e.g., in the ego-vision system we set it to 0.5m).
In this way an initial hand mask is obtained (see Fig. 6b): the set of all the
points in this initial mask will be denoted with H′. The approach can be
made more robust by checking the compatibility of the color of the samples
with the skin color [12], at the expenses of an increase in computation time.
Typically after this operation the hand remains in the scene together with the
first part of the arm and some other isolated objects or spots due to the noise
of the sensor. The longest contour, that typically corresponds to the hand, is
extracted from the binary mask and a second mask H′′ containing the area
inside this contour is generated. This mask contains only the hand without
other objects but internal contours or holes inside in the hand region will be
filled (e.g., the area between the thumb and index of the “Ok” gesture in Fig.
6). For this reason the masks H′ and H′′ are intersected in order to get the
mask H′′′:

H′′′ = H′ ∩H′′ (1)

which contains only the hand points together with the wrist and the first part
of the forearm. A distance transform (DST) is applied to the binary mask
H′′′ in order to find the hand center: the maximum of the DST assumed to
correspond to the center. More precisely a new data structure D′(x) = D′(u, v)
containing the distance from each pixel x = (u, v) to the closest point not
belonging to the mask is constructed, i.e.,

D′(u, v) = min
(j,k)6∈H′′′

(|u− j|+ |v − k|) (2)

where the Manhattan (i.e., d1) distance has been used as the distance metric
(it provided the same performances of the Euclidean one and proved to be
faster to compute). The approach of [7] has been used for the computation of
the distance transform, an example of the results of the algorithm is shown in
Fig. 7a. The maximum of D′(u, v),

D′max = max
(u,v)

D′(u, v) (3)

is computed and the point corresponding to the maximum of the DST is se-
lected as the palm center C (if multiple pixels with the same highest distance
transform value are present their barycenter is selected as the hand center).
After locating the palm center, a circle of radius R = 3D′max, centered on CH ,
is computed and all the points outside the circle are excluded from the mask
thus obtaining the final hand mask H(u, v). Notice that this final step allows
to remove the forearm if it has been included in the hand shape. The distance
transform is also re-computed using this updated mask, thus obtaining a new
set of distance values D(u, v) that will be used for the construction of the dis-
tance features (see Section 4.2). The orientation of the hand is then obtained
by computing the first two moments of the binary mask (see Fig. 7b for an
example). Finally the hand region is re-sampled to 100×100 pixels in order to
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normalize the data with respect to different hand sizes. The external contour
of the mask H is then computed, leading to a sequence of points b′1, ...,b

′
k.

The sequence is uniformly re-sampled into a sequence b1, ...,bn with a con-
stant number of samples n. This allows to make the approach invariant to
the number of pixels in the contour (for the results we used n = 500). The
sequence b1, ...,bn will be used in the feature extraction step. The starting
point b1 of the contour is selected as the one corresponding to the computed
orientation, in order to make the approach also rotation invariant. This allows
to recognize gestures independently of the hand orientation, but also makes
all the gestures with the same hand pose equivalent, if gestures like pointing
left or right need to be disambiguated the problem can be solved in two steps
by firstly recognizing the gesture and then disambiguating between the two
sub-cases with the moments information.

a) Color view b) H′

c) H′′ d) H′′′

Fig. 6 Computation of the initial hand mask: a) Color view with augmented reality ele-
ments from the ego-vision system; b) Binary mask H′(u, v) from the thresholding operation;
c) Area H′′(u, v) inside the longest contour; d) Intersection H′′′(u, v) of the two masks.
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a) b)

Fig. 7 a) Distance transform computed on a sample hand mask (the circle has a radius
equivalent to the maximum of the distance transform); b) hand center and orientation
obtained from the binary moments.

4.2 Features extraction

Two different sets of features are then extracted from the information com-
puted in Section 4.1. The first set describes the curvature of the contour
b1, . . . ,bn. The contour is analyzed and for each sample bi the curvature
is computed as the angle made between the set of the preceding samples and
the set of the subsequent ones. More precisely, let pi be the barycenter of
the k preceding samples and si the one of the k subsequent samples (for the
proposed system we used k = 5), i.e.,:

pi =
1

k

k∑
j=1

bi−j (4)

si =
1

k

k∑
j=1

bi+j (5)

Finally, the curvature ci associated to the i-th sample is computed as the angle
between the vectors (bi − pi) and (si − bi), i.e.:

ci = arccos [(bi − pi) · (si − bi)] (6)

As shown in Fig. 8, the algorithm computes the angle from the straight
direction made by the contour in proximity of the i-th sample and thus each
value ci is included in the range [−π,+π] (notice that also the sign of the
curvature is considered). Averaging over the k closest pixels in both directions
makes the approach more stable with respect to the noise on the contour, a
relevant issue due to the high noise level of the employed depth camera. The
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ci

pi

si
bi

Fig. 8 Computation of the curvature value ci at the location of sample bi. Point pi (shown
with a green star) is the barycenter of the preceding samples and si (shown with a blue star)
is the barycenter of the subsequent ones. (Best viewed in color)

result of this computation is a sequence of values c = (c1, . . . , cn) representing
the local curvature at each location of the contour.

The second descriptor represents the thickness of the hand region associ-
ated to each contour point. This descriptor is based on the previously com-
puted distance transform D(u, v) on the hand mask H . For each contour
sample bi, the values of D(x) along the direction ni perpendicular to the
contour are analyzed (see Fig. 9). The first maximum of the DST along the
direction ni going towards the center of the hand is then selected (the search
stops when a maximum is found) and used as the feature value, i.e.,:

di = max
k

D(bi + kni) (7)

where k is the displacement from the contour in pixels that grows until a
maximum is found (i.e., the values of D start to decrease).

At the end of this process a sequence of values d = (d1, . . . , dn) is obtained,
each value di giving the distance value associated to the i-th sample. As shown
in Fig. 9, higher values correspond to the palm area and to groups of fingers
joined together, while the DST takes smaller values in the fingers region.

4.3 Gesture Classification

After computing the two feature descriptors, their values are fed to the classi-
fication algorithm. In order to perform the recognition, feature data are firstly
rearranged in a three dimensional structure and then fed to a multi-class one-
against-one SVM classifier. The employed classifier has been trained on a syn-
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Fig. 9 Computation of the distance-based features: the green arrows represent the direc-
tion along which the maximum DST value is chosen and the color of each edge pixel is
proportional to the value of the DST in the corresponding maximum.

thetic dataset constructed using a rendering system developed ad-hoc for this
work.

For each input frame, a feature vector is computed starting from the con-
tour curvature and distance-based features extracted as described in Section
4.2. An example of the content of the two feature vectors for a sample gesture is
shown in Fig. 10, where the vectors c and d are shown by plotting the value of
each element against its index. A first possibility is to feed the Support Vector
Machine with a simple concatenation of the two vectors c = (c1, . . . , cn) and
d = (d1, . . . , dn). The effectiveness of this basic solution relies on how precisely
the hand orientation is estimated for each frame, or at least on the invariance
of the orientation information with respect to different executions of the same
gesture. Due to the not too precise estimation of the hand orientation this ap-
proach provided sub-optimal results in our tests. For this reason the data have
been rearranged in order to better capture significant correlations between the
two descriptors. A possible workaround for the orientation issue is to plot on
a plane the discrete parametric curve given by (ci, di), where the parameter
i ranges from 1 to n. Fig. 11 shows an example of this representation, i.e., it
displays the curvature and distance couples (ci, di) taking the index i as an im-
plicit parameter. In this case, since the shape of the curve does not depend on
which contour sample is chosen as the starting point, the orientation estimate
plays no role in the descriptor computation. On the other hand, using only
this type of features without exploiting the information about the variations
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of the curvature or of the distance with respect to the position of the samples
may result in a significant drop in the prediction accuracy of the classifier,
especially if a relatively good orientation estimate is available.

Fig. 10 Curvature and distance features for a sample gesture. The feature values have
been plotted starting from the red point and proceeding in clockwise order along the hand
contour.

Fig. 11 Plot of the the parametric (ci, di) curve for the sample gesture of Fig. 10a.

The idea exploited in this work is to make explicit the parameter i, or
equivalently to look at the triples (ci, di, i) for i = 1, . . . , n as coordinates in a
three-dimensional space. An array representation of a quantized and smoothed
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version of the resulting 3D plot is computed and used as the feature vector
to be given in input to the classifier. More precisely, the ranges of possible
values of ci ∈ [0, 2π] (curvature values are shifted from [−π, π] to [0, 2π] in
order to simplify the representation) , di ∈ [0, 1] and i ∈ [1, n] are divided
into three set of quantization intervals, i.e., Ic = {1, . . . , nc}, Id = {1, . . . , nd}
and Ii = {1, . . . , ni} respectively. A quantization function is then used map-
ping each triple (ci, di, i) to the corresponding combination of quantization
intervals, represented by a triple of integers (j, h, k) in Ic × Id × Ii. A three
dimensional array A of size nc × nd × ni is created where the entry A(j, h, k)
is set to 1 if there exists at least one triplet (ci, di, i) which is mapped to
(j, h, k) ∈ Ic × Id × Ii by the quantization function, and it is set to 0 other-
wise. Finally, a multi-dimensional Gaussian filter is applied to the array, using
suitable standard deviations σc, σd, and σi for each dimension along which
the filter is applied. In order to handle the boundaries, before applying the
filter, the array is extended outside its borders with zeros along the first two
dimensions (those relative to the intervals Ic and Id), while wrapping is per-
formed along the third dimension (the one accounting for intervals Ii). An
example of the resulting representation is given in Fig. 12, where four slices
along the third dimension of the 3D array are shown. Notice how the Gaussian
smoothing makes the proposed approach more stable with respect to the sen-
sor noise and to inaccuracies in the computed contour. The plots in the figure
are computed from the same gesture of Fig. 10, and the different intensities
of blue are used to represent the element values ranging from 0 (white) to 1
(dark blue).

By varying both the granularity of the quantization intervals Ii and the
amount of Gaussian smoothing applied along the third dimension (i.e., varying
σi), it is possible to implicitly reduce the weight that the position informa-
tion of the feature values (and consequently the orientation information) has
in describing the different gestures. The number of intervals nc, nd and the
standard deviations σc, σd relative to the first and second dimension have also
an impact on the relative importance between the two type of features.

In the proposed system nc = 20, nd = 20 and ni = 10 have been used
to perform quantization. The standard deviations of the Gaussian filter have
been set to σc = 1.5, σd = 1.5 and σi = 1.0. An additional smoothing has been
applied separately to both curvature and distance vectors c and d as a pre-
processing step before computing the three-dimensional array. In particular, a
1-dimensional Gaussian filter with standard deviation σ = 2.0 has been used
to smooth curvature values. For the distance vectors a standard deviation
σ = 4.0 has instead been used. The quantization and filtering parameters
have been experimentally determined and provided the optimal performance
in our setup, as expected using a finer quantization and a lower amount of
smoothing increase the accuracy of the descriptors but reduces the robustness
to noise and other issues. If a different depth camera or a different set of
gestures are used these values can be changed in order to find the optimal
trade-off between robustness and accuracy.
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j = 1 j = 3

j = 5 j = 7

Fig. 12 Example of the three-dimensional array A corresponding to the gesture in Fig.
10 for some sample values of the index j. The employed parameters are nc = 20, nd = 20,
ni = 10, σc = 4.0, σd = 1.5, σi = 1.0.

In Fig. 13 the computed features are reported for three different repetitions
of 4 different gestures (gestures G1, G3, G5 and G6 of the test dataset used to
evaluate the system). For each repetition, four slices of A are displayed corre-
sponding to values j = 1, 3, 5, 7, notice how the basic shape of the descriptor
remains the same along the various repetitions. By looking also at the different
gestures in the figure it is possible to realize that the shapes are characteristic
of the performed gesture and allow a very good discrimination between the
different gestures.

As previously introduced the classification is performed with a multi-class
Support Vector Machine. We used the implementation from the scikit-learn
library [27]. The employed kernel is the Radial Basis Function (SVM) with
parameters C = 1 and γ = 0.0025. The multi-class classification has been
performed using the one-against-one approach. The classifier has been trained
by computing the feature vector A for each sample of the training dataset as
previously described.
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G5
Rep.1

G5
Rep.2

G5
Rep.3

G6
Rep.1

G6
Rep.2
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Rep.3

j = 1 j = 3 j = 5 j = 7

Fig. 13 The figures shows 4 different slices of the feature array A for 3 different repetitions
of 4 different gestures (i.e., gestures G1, G3, G5 and G6 from Fig. 22). Notice how the slices
are similar for different repetitions of the same gesture and very different among different
gestures.
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A large training dataset allows a more accurate classification but on the
other side its construction requires a huge amount of manual work. In or-
der to solve this problem we performed the training on a computer generated
dataset that simulates the data that would have been acquired in a real setup.
The rendering of an accurate hand shape is a challenging task because of its
anatomy and because of the large variety of poses that it can assume. A ren-
dering system exploiting the linear blend skinning technique [19] and a fast
OpenGL renderer derived from the one used in the visualization system has
been developed (it is available at http://lttm.dei.unipd.it/downloads/

handposegenerator/ ). The various hand poses have been generated by ren-
dering a 42-DOF skeleton (see Fig. 14) attached to a textured 3D model de-
rived from the one used in the open source library LibHand v0.9 [36]. Depth
information is finally exported in order to simulate the data provided by the
depth camera in the real setup and, as it is possible to see from Fig. 15, the
synthetic depth images are a good representation of the real ones. For each
gesture we considered several different hand positions and orientations, differ-
ent inter-distances of the fingers and we generated a large dataset of 35200
training frames. There are 3200 different samples for each of the 11 considered
gestures (see Section 6) corresponding to different orientation and small varia-
tions in the position of the fingers. In particular 5 different inclinations in the
x-axis direction, 4 in the y-axis one and 5 for the z-axis have been considered,
thus obtaining 100 possible orientations. Different small perturbations of the
positions of the fingers (e.g., a bit closer one to the other) have also been
considered and 32 different variations of each pose have been generated. By
combining all possible positions and orientation, 100x32 = 3200 samples for
each gesture have been obtained and used to train the classifier.

Fig. 14 42-DOF hand skeleton used by the rendering library.
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Fig. 15 Comparison of real data acquired by the ToF sensor (first row) and synthetic
depth maps (second row) on 3 sample gestures.

5 Applications

The proposed system can be used in a wide range of contexts and some sample
applications have been built. The first considered environment is a virtual re-
ality one: Fig. 16 shows a simple video-game exploiting the considered system.
In this case the main difference with respect to traditional systems is the ges-
ture interface. Furthermore, compared to other gaming platforms controlled
with gestures like Microsoft’s Kinect, the use of the head mounted sensor al-
lows to move around while playing the game instead of being locked in front
of the sensor.

Fig. 16 Example of a virtual reality 3D game running inside the proposed system. The
figure (as the others in this section) show the two rendered views presented to the two eyes.
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It is also possible to create augmented reality games that combine together
real and virtual elements. In particular the depth sensor calibrated with the
visualization system allows to create virtual elements properly placed and
interacting with the real environment and the user. An example is the virtual
sphere in the example of Fig. 17. This is an example of the novel interaction
schemes made possible by 3D data and by the gesture recognition system: the
demo application allowed the creation of a sphere centered exactly on the user
hand, that remains attached to the hand when it moves in 3D space. In this
demo when a selected gesture is performed the hand orientation is computed
and the sphere is thrown.

Fig. 17 Augmented reality game including virtual and real elements. Notice how the virtual
sphere is properly placed in the 3D location corresponding to the center of the hand.

A more interesting application for the proposed system is the construction
of human-computer interfaces. The proposed system allows the interaction
with a computer while the user is moving around in the real world, thus open-
ing the way to novel augmented reality applications. A traditional operating
system interface with multiple desktops can be combined with the proposed
system as shown in Fig. 18 and in the submitted video. This demo exploits
both the RGB and depth data from the sensor: the color data allows the user
to stay focused in the reality he is in, while the depth data allows to place a
set of customizable displays on the preferred positions in the 3D space of the
real world and to adjust them according to the user head position and to the
real objects interacting with the computer interface. In particular the various
windows instead of lying in the computer screen can be virtually placed in
any location of the real world. For example if an user has to interact with a
machinery, the window containing the interaction controls or the instructions
to use the machinery can be placed directly over the object in the real world
(a couple of examples are shown in Figs. 19 and 20). The use of the RGB-D
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camera allows a more precise localization than in standard augmented reality
applications exploiting visual features.

The gesture interface of Section 4 can be used not only to interact with the
virtual desktops using the hand as a mouse and the gestures for the commands
but also to move the virtual desktops around in the 3D space. Fig. 21 shows
an example of how the user is able to move the displays around with a simple
gesture. The displays are also fully customizable through the gesture interface
and the user can change their size, position, orientation, transparency and
distance from his eyes. The gestures recognized by the system are translated
into movements or actions depending on the setup. For movements, as the
field of view of the ToF depth sensor is not too large, the following system is
used: when the gesture is recognized, a starting point is saved and provides
an anchor referring to which the consequent positions are evaluated in order
to allow the movement in the corresponding direction.

The gestures are acquired in real time for each frame and stored in a queue.
Only gestures that have been recognized in a number of recent frames in the
queue are considered, thus avoiding issues due to erroneous recognitions in
isolated frames. In detail, let us assume that the target is the recognition of
h different gestures G1, G2, .., Gh. We can introduce an indicator function li,g
that is equal to 1 if the proposed classification algorithm detects gesture g
at time instant i and to 0 otherwise. In order to increase the robustness of
the approach at each time instant t we consider the last k frames and we
compute the number of times Cg =

∑k−1
i=0 lt−i,g each gesture is detected. Then

we denote with CM1 = maxg Cg the number of times the most frequent gesture
has been detected and with CM2 the frequency of the second most common
one. Finally we detect a gesture and send the corresponding command if it
has been recognized more frequently than the second candidate with a 30%
margin, i.e., if the following condition is satisfied:

CM1 >
CM2

0.7
. (8)

Moreover the system can be used in a wide spectrum of environments
with the main goal of enabling users to increment the information that is
immediately available. Some examples are:

– Medical applications where augmented information coming from diagnostic
data can help the operator (for example X-ray or MR data over the live
view of the patient).

– Sports applications where the movements of the player or the trajectories
of the ball can be used to perform a more accurate training and evaluation
of the the athlete.

– An engineer could use it for having multiple virtual monitors while working
on some machinery.

– For architects it can be used to enable live preview of their creations (for
example by overlaying the new project over a building that needs to be
renovated), thus evaluating the comfort and feasibility.
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Fig. 18 Examples of virtual desktops placed in the real world environment.
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Fig. 19 Example of augmented reality application where the proposed system is used to
help the user mounting a shelf.

6 Experimental evaluation

This section presents an evaluation of the accuracy of the gesture recognition
module and then a brief report on the usage of the complete system.

6.1 Gesture recognition module

The gesture recognition module has been widely tested in different environ-
ments inside the proposed ego-vision system, but in order to perform a numer-
ical evaluation of its performances an hand gesture dataset has been acquired
with the Creative Senz3D camera. The dataset contains 11 different gestures
performed by 4 different people and is available at http://lttm.dei.unipd.
it/downloads/gesture2 . A sample color and depth frame for each gesture
is shown in Figure 22, notice how the dataset contains different gestures with
the same number of raised fingers, gestures with fingers very close each other
and with fingertips touching each other. Each gesture has been repeated by
each user 30 times for a total of 1320 acquisitions.

Table 1 shows the results obtained by training the classifier on the syn-
thetic dataset as discussed in Section 4.3 and then performing the testing on
real data contained in the acquired dataset. Most of the gestures are correctly
recognized and an average accuracy of 90% has been obtained. This is a quite
remarkable result considering that the training has been performed on a syn-
thetic dataset without any real acquisition. The extracted features are stable
across different repetitions of the same gesture but at the same time they are
able to discriminate different gestures. Looking more in detail at the results
in Table 1 it is possible to notice how the accuracy is above 80% for all the
considered gestures and above 90% for most of them. The most critical ges-
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Fig. 20 Example of augmented reality application where the proposed system is used to
help the user choosing a shirt of the correct size.

tures are G2, G7 and G9. G2 is sometimes confused with G3 since they differ
only for the position of the thumb that in some acquisitions is not very easy
to detect from the silhouette. G7 and G11 both have a single raised finger
and sometimes are confused each other. This is a typical problem for many
gesture recognition approaches due to the limited accuracy of the orienta-
tion information and of the not too precise measures from the depth camera.
The three-dimensional data structure allows to improve performances on such
configurations, but there is still room for further improvements. Finally G9 is
another challenging gesture due to the touching fingers, it is recognized 82% of
the times, a good result considering that many approaches based on fingertips
detection are typically unable to handle this gesture.

With regard to the effectiveness of the proposed features arrangement, it
is interesting to look at Table 2 which reports, in the first row, the per-gesture
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Fig. 21 The virtual displays can be moved around in the 3D space using the gesture
interface.

G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11

Fig. 22 Sample color and depth frame for each gesture in the experimental results dataset.
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G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11
G1 0.94 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00
G2 0.00 0.84 0.12 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00
G3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G4 0.00 0.00 0.00 0.88 0.09 0.00 0.02 0.00 0.00 0.00 0.02
G5 0.00 0.00 0.00 0.06 0.88 0.00 0.00 0.00 0.00 0.06 0.00
G6 0.00 0.03 0.00 0.00 0.00 0.88 0.00 0.00 0.04 0.00 0.05
G7 0.00 0.00 0.01 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.19
G8 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.93 0.04 0.00 0.00
G9 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.05 0.82 0.00 0.01
G10 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.92 0.00
G11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 1 Performance of the proposed approach on the acquired dataset. The Table shows
the confusion matrix for the 11 different gestures contained in the dataset. Due to rounding
effects some rows can sum up to 0.99.

accuracies obtained by feeding the SVM with a simple concatenation of the
two features vector c and d. These results are compared with those achieved
by the proposed approach (that exploits the three-dimensional structure to
combine the two types of features), which are listed in the second row. The
table clearly shows how the proposed scheme allows to significantly improve
the recognition accuracy while the effectiveness of using the c and d vectors
alone or concatenated depends on how well the hand orientation is estimated
and small variations in these estimates may lead to poor classification results.

We also compared the proposed approach with competing strategies from
the literature. In [12] an effective approach for static hand gesture recognition
exploiting different types of features has been proposed. The approach of [12]
is very effective when real data is used for training but is not able to exploit
the synthetic data of our training set as well as the proposed work. Among
the various descriptors proposed in [12] the best performing ones are the dis-
tance features, that allow to obtain an accuracy of 75%, relatively good but
quite far from the 90% of the proposed approach. Even by combining multiple
descriptors together did not allow to improve the performance w.r.t. to the
distances alone. We also tested the descriptors based on the convex hull con-
cavities proposed in [13], but this approach lead to a limited accuracy of 65%
on the considered dataset.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 All
c + d 0.97 0.53 0.84 0.72 0.66 0.77 0.77 0.28 0.17 0.93 0.37 0.64

3D array 0.94 0.84 1.00 0.88 0.88 0.88 0.80 0.93 0.82 0.92 1.00 0.90

Table 2 Per-gesture accuracies achieved by exploiting the concatenation feature vector
c+d (first row) and by the proposed three-dimensional feature array (second row). Results
in the first row were obtained using the best configuration returned by a grid search over a
number of parameters controlling sub-sampling and smoothing of c and d.

The proposed approach has also very limited computational requirements
(see Table 3). On the 320x240 depth maps produced by the Senz3D depth
camera, the hand segmentation requires 3.1ms on average on a standard PC
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(an Intel i5-2430 CPU running at a 2.4Ghz). The extraction of the features
can be computed in only 0.83ms while SVM classification takes around 1ms
on average. Summing up the three steps, the average total execution time is
less than 5ms for each analyzed frame. This corresponds to a frame rate of
200fps that makes the approach very well-suited for the proposed system.

Step Execution Time
Hand Segmentation 3.1 ms
Feature Extraction 0.83 ms
SVM Classification 1 ms

Total 4.93 ms

Table 3 Average execution time of the various steps of the proposed approach. The test
have been performed on a standard PC with an Intel i5 processor.

6.2 Applications evaluation

The sample demos presented in Section 5 show the strength points of the
developed system but there is plenty of room for further developments thanks
also to the modular architecture of the proposed system that makes easy the
construction of new applications.

The system has been tested by different people and in different settings
and the testers, even with a short learning time, ended up with a positive
review. It has also been tested in some very challenging environments: e.g.,
a trip on a paddle boat (Fig. 23a) and a roller-coaster ride (Fig. 23b) with
high speed, bumps, sun light directly to the camera and moving objects all
around. The system proved to be reliable also in these challenging settings.
In particular the first test, performed in a paddle-boat was very successful
with a smooth and nice visualization and it showed how the system is able
to properly work in this environment. The roller coaster environment is very
challenging due to the high speed and strong vibrations of the roller coaster.
In this case the camera frame rate is not always sufficient to accurately handle
the very fast motion but it is still possible to use the system. In particular
the single frame gesture recognition algorithm was working also in this case.
Another limitation is that the chosen depth camera is not suited for all the
range of environments (specially the acquisition range is limited), but all the
available depth acquisition devices and techniques have their issues as size,
weight, range or reliability (e.g., 3D data from stereo vision systems is far less
reliable). The system has been tested also at the European Researchers’ Night
with a large number of people (around 70) of different ages and different skill
levels. The users have been asked frequently for eye-strain, headache or nausea,
and while the usage time was limited to few minutes each, no problems were
reported. The overall experience was highly appreciated, and while kids loved
the games, adults could test a possibility for their future human-computer
interface.
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a) b)

Fig. 23 Examples of the system in challenging environments: a) paddle boat; b) roller
coaster.

7 Conclusion

In this paper a novel human-computer interaction system has been proposed.
The exploitation of a depth camera has allowed to place the virtual elements
into the desired locations in the real world and to use a novel interaction
scheme based on hand gesture recognition. Critical issues like the calibration
of the visualization and acquisition sub-systems have been considered and
solved. Concerning gesture recognition, two new different feature descriptors
have been developed ad-hoc for this problem, based on the contour curva-
ture and on the shape thickness represented through a distance transform.
By arranging them in a smoothed three-dimensional data structure we ob-
tained a representation that proved to be discriminative and at the same time
stable across different repetitions of the same gesture. The critical problem
of the classifier training has been solved by developing a rendering applica-
tion able to create realistic synthetic depth maps. The system has been tested
in different augmented reality applications and in challenging outdoor envi-
ronments and demonstrated to be very reliable. Experimental results showed
that the proposed system enables an effective augmented reality experience to
the test users. The gesture interface has been tested on a challenging dataset
and obtained a 90% recognition accuracy in real-time. Further research will
be devoted to the development of novel applications exploiting the proposed
system and to the study of novel feature descriptors in order to improve the
performances of the gesture recognition module. Furthermore the inclusion
of a dynamic gesture recognition algorithm capable to account also for the
temporal dimension besides the static pose will be considered.

Acknowledgements The authors would like to thank Ludovico Minto and Fabio Dominio
for their help in developing some components of the gesture recognition system
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