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Abstract

Current 3D video applications require the availability of
high quality depth information. Depth information can be
acquired real-time by stereo vision systems and ToF cam-
eras. Both solutions present critical issues, that can be
overcome by their combined use. In this paper, a hetero-
geneous acquisition system is considered, made of two high
resolution standard cameras (stereo pair) and one ToF cam-
era. The stereo system and the ToF camera must be prop-
erly calibrated together in order to operate jointly. There-
fore this work introduces first a generalized multi-camera
calibration technique which does not exploit only the lumi-
nance (color) information, but also the depth information
extracted by the ToF camera. A probabilistic ad hoc fu-
sion algorithm is then derived in order to obtain high qual-
ity depth information from the information of both the ToF
camera and the stereo-pair. Experimental results show that
the proposed calibration algorithm leads to a very accurate
calibration suitable for the fusion algorithm, that, in turn,
allows for precise extraction of the depth information.

1. Introduction

The extraction of depth information suitable for the
creation of 3D video content is a very challenging issue.
Various systems [5, 23] have been proposed in order to
solve this task, each one with pros and cons, and the re-
search on this topic is still active. Traditionally this problem
has been tackled by means of stereo vision systems, that
exploit the information coming from two or more standard
cameras [2, 23, 25]. Stereo vision systems have been
greatly improved in the last years and obtained interesting
results, however they cannot handle all scene situations
(aperture problem). Moreover the most advanced stereo
vision systems are characterized by very time-consuming
algorithms, not suited for real-time operation. Hence,

stereo vision systems do not provide completely satis-
factory solutions for the extraction of depth information
from generic scenes. Other traditional systems proposed
in order to solve such problems are active methods such
as structured light or laser scanners. Such methods can
obtain better results than passive stereo vision systems, but
generally require long acquisition times, therefore they are
not suitable for the acquisition of dynamic scenes.
New depth acquisition systems, such as Time of
Flight (ToF) range cameras (e.g., Mesa Imaging
SwissRangerTM[19], CanestaVisionTM[16] chips and
similar) have recently reached the market. Such devices
compute depth by sending an infrared signal (e.g., the
SwissRangerTMemits a radiation with illumination wave-
length 850nm) and measuring the phase shift of the
reflected light signals. ToF cameras are quite compact,
can extract depth information in real-time and are not
very sensitive to scene peculiarities. However, they have
a limited resolution (e.g., the SwissRangerTMproduces a
depth image with resolution 176x144), limited accuracy,
and they are very sensitive to the background illumination
at the ToF illumination wavelength. Contrary to other
active systems, ToF cameras are suitable for the acquisition
of dynamic scenes.
Interesting results can be achieved by using an heteroge-
neous acquisition system, coupling a stereo vision system
with some ToF cameras. An acquisition system composed
by a ToF camera and a stereo pair is proposed in [27]. The
two subsystems are coupled by an empirical application
of the belief propagation algorithm, originally proposed in
[25]. In [10] the two systems are combined by converting
the ToF depth measurement into disparity, and then using
it as an initialization for a hierarchical stereo matching
algorithm. In [8, 14, 22] information from the different
sensors is combined by fusing data on 3D probabilistic
occupancy grids, exploiting also silhouette cues. Finally [1]
presents a fusion algorithm for the estimation of patchlets
exploiting information from a ToF camera and a stereo pair.



This paper proposes a novel method to obtain accurate
depth maps from data acquired by a trinocular heteroge-
neous acquisition system made by a ToF camera T and
two standard videocameras {L,R}, forming a stereo pair
S , {L,R}. Probabilistic models are derived for both the
ToF camera and the stereo pair, then a Bayesian approach is
exploited for the fusion of the probability models for T and
S, and finally the joint probability is maximized applying a
local method. The ToF camera T acquires:

• An amplitude image AT , which describes the pixel by
pixel reflectance of the framed scene at the illumina-
tion wavelength;

• A depth image DT , which gives the pixel by pixel
depth information about the framed scene;

• A confidence map CT (in the case of the
SwissRangerTM), which qualifies the pixel by
pixel precision of the depth measurements. High
values of CT indicate high precision in the depth
measurement, while low values indicate low precision.

The two standard cameras acquire RGB images {IL, IR}.
The acquisition scheme is shown in Figure 1. In order to
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Figure 1. Acquisition system

correctly use the information from {T, L,R}, it is firstly
necessary to properly calibrate the proposed system. Once
the system is calibrated, a fusion algorithm, that combines
the data acquired by the three cameras {T, L,R}, must be
developed. The goal of the fusion algorithm is the estima-
tion of the depth distribution Z of the scene portion framed
by all the 3 cameras.
The paper is organized in the following way: Section 2
presents a novel ad hoc calibration method needed to per-
form a very accurate system calibration; Section 3 derives
a proper fusion algorithm needed to exploit the information
coming from all the 3 cameras; Section 4 presents some ex-
perimental results about its performance.

2. Calibration
System calibration as well known is subdivided into 2

different tasks: calibration of the intrinsic parameters and
calibration of the extrinsic parameters.

2.1. Intrinsic Parameters

Concerning the camera projection properties, the classi-
cal Heikkila model [13] is considered for all the 3 cameras.
The estimation of the intrinsic parameters and the compen-
sation of radial and tangential distortions can be performed
by standard calibration algorithms [26]. All the acquired
data {AT , DT , CT , IL, IR} will be considered in the rest
of the paper free from radial and tangential distortion. The
calibration of T requires also to compensate for the sys-
tematic error in the depth measurement [20], which can be
performed by a polynomial correction functional approach
[24]. The depth image DT will be considered in the rest of
the paper free from systematic errors in the depth measure-
ment.

2.2. Extrinsic Parameters

A camera reference frame is associated with each of the
3 cameras. The world reference frame is assumed to coin-
cide with the reference frame of T . All the depths reported
next, will be considered with references to the T camera
reference frame.
The calibration of the extrinsic parameters is the estima-
tion of the relative rototranslations between the 3 camera
reference frames {T, L,R}. For high resolution cameras,
the extrinsic parameters’ calibration is a standard operation
[11, 26], which can be performed with high precision. For
low resolution ToF cameras, the problem is quite new, and
there are no consolidated procedures giving the necessary
precision [9, 21]. Two main factors limiting the precision
are:

• the low resolution of the ToF cameras (e.g., the
SwissRangerTMproduces a depth image with resolu-
tion 176× 144);

• standard calibration methods just consider reflectance
information and not depth information, which is the
main information acquired by the ToF cameras.

For the reasons above, an ad hoc calibration algorithm is in-
troduced next, leading to accurate calibration results.
The ToF camera T and the stereo pair S, can both convey
3D information. By a standard planar calibration checker-
board, it is possible to identify a set of n corners P i:
P = {P i, i = 1, ..., n}. Such points project into the 2D
camera image points piT ,piL,piR, i = 1, ..., n; where:

• piT ∈ AT , DT , CT and has coordinates (uiT , v
i
T );

• piL ∈ IL and has coordinates (uiL, v
i
L);

• piR ∈ IR and has coordinates (uiR, v
i
R).

As for the coordinates of corners piL and piR in the standard
camera images, the coordinates of corners piT can be ob-
tained by the application of a standard corner detector on the
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amplitude images AT . For the stereo pair S, a standard cal-
ibration of the extrinsic parameters (including stereo rectifi-
cation) [11, 26] is performed using {(piL,piR), i = 1, ..., n}
as input. The relative rototranslation MRL of the R refer-
ence frame with respect to the L reference frame is then ob-
tained. The 3D coordinates with respect to the L reference
frame {PiS , i = 1, ..., n}, of the corners {P i, i = 1, ..., n}
are computed from {(piL,piR), i = 1, ..., n} by triangula-
tion [12].
The 3D coordinates with respect to the T reference
frame{PiT , i = 1, ..., n}, of the corners {P i, i = 1, ..., n}
are computed from the values of DT in {piT , i = 1, ..., n},
by inverting the standard pinhole camera equation. For this
reason, the 3D coordinates {PiT , i = 1, ..., n} are called
back-projected coordinates.
Given the set of points P , with coordinates {PiS , i =
1, ..., n} with respect to the L reference frame, and coor-
dinates {PiT , i = 1, ..., n} with respect to the T reference
frame, the estimation of the rototranslation ML of the L
reference frame with respect to the T reference frame is an
absolute orientation problem, that can be solved by apply-
ing Horn’s algorithm [15] and RANSAC [4]. Horn’s algo-
rithm gives a closed-form solution to the relative orientation
problem, minimizing the sum of the Euclidean distance er-
rors between all corresponding points:

arg min
[ML]

n∑
i=1

||PiT −ML · PiS ||2. (1)

Horn’s algorithm allows to obtain the best rototranslation
ML because the closed-form solution prevents falling into
local minima, a common issue of gradient-based methods
(classically adopted in the minimization task). Moreover,
Horn’s algorithm fully exploits the ability of the stereo pair
and of the ToF camera to perform stand-alone 3D recon-
structions. Horn’s algorithm is used inside a RANSAC es-
timation scheme in order to limit the errors due to outliers
caused by the ToF depth measurement noise or by badly de-
tected corners.
Finally the relative rototranslation MR, of the R reference
frame with respect to the T reference frame is computed as
composition of rototranslations ML and MRL.

3. Fusion Algorithm
As already said in Section 1, the goal of the fusion al-

gorithm is the estimation of the depth distribution Z of the
portion of the scene framed by all the 3 cameras {T, L,R}
by combining information coming from the ToF camera T
and the stereo pair S. The output of the fusion algorithm
is an estimate Ẑ of the depth distribution Z. Both Z and
Ẑ are expressed with respect to the T reference frame. Ẑ is
estimated from the information given by {DT , CT , IL, IR}.
All these 4 “images”, and the depth distribution Z can be

modeled as random fields:

• DT is the random field of the depth measured by T ,
defined over the lattice of the undistorted images pro-
duced by T ;

• CT is the random field of the confidence in the depth
measurement performed by T , defined over the lattice
of the undistorted images produced by T ;

• IL is the random field of the color images acquired
by L, defined over the lattice of the undistorted and
rectified images produced by L;

• IR is the random field of the color images acquired
by R, defined over the lattice of the undistorted and
rectified images produced by R;

• Z is the random field of the depth distribution of
the portion of the scene framed by all the 3 cameras
{T, L,R}, defined over the subset Z of the lattice of
the undistorted images produced by T that is framed
also by the 2 cameras {L,R} (i.e. the final depth esti-
mate Ẑ has the same resolution as DT ).

Estimate Ẑ is also defined on Z . For simplicity, the ran-
dom fields can be grouped as IT = {DT , CT } and IS =
{IL, IR}. From Bayes rule, the joint posterior probability
of Z given {IT , IS} can be expressed as:

P [Z|IT , IS ] =
P [IT , IS |Z]P [Z]

P [IT , IS ]
. (2)

The goal of the fusion algorithm is to obtain the argument
Ẑ maximizing eq. (2), i.e,

Ẑ = argmax
Z

P [Z|IT , IS ] = argmax
Z

P [IT , IS |Z]P [Z]
P [IT , IS ]

.

(3)
Since the denominator of the RHS does not have any refer-
ence to Z, maximizing the RHS of eq. (3) or maximizing:

Ẑ = argmax
Z

P [IT , IS |Z]P [Z]
C

, (4)

for an arbitrary C independent from Z lead to the same
value Ẑ. Value C can be taken equal to P [IT ]P [IS ]. Since
Z is uniform (there is no reason for a non-uniform distri-
bution of the depth of a point from a camera), P [Z] is a
constant value, therefore eq. (4) can be written as:

Ẑ = argmax
Z

P [IT , IS |Z]P [Z]P [Z]
P [IT ]P [IS ]

. (5)

Finding a model for conditional probability P [IT , IS |Z] is
a hard task. A convenient possibility is to assume {IT |Z}
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and {IS |Z} independent, in this way the RHS of eq. (5) can
be approximated as:

argmax
Z

P [IT |Z]P [Z]
P [IT ]

P [IS |Z]P [Z]
P [IS ]

. (6)

Hence the final expression for Ẑ is:

Ẑ = argmax
Z

P [Z|IT , IS ] ≈ argmax
Z

P [Z|IT ]P [Z|IS ].
(7)

3.1. ToF camera model

Posterior probability P [Z|IT ] of the depth distribution
given the measurements of the ToF camera T can be ex-
panded as P [Z|DT , CT ]. For each pixel p ∈ Z the random
field Z can be considered as juxtaposition of independent
per-pixel measurements Z(p). This is equivalent to assume
the independent ray model for the ToF camera T . Accord-
ing to this model, for each pixel p ∈ Z , its depth Z(p) is
measured independently from the depths of its neighboring
pixels. Such a model is not always accurate, especially in
the presence of depth discontinuities. As reported in [20],
each pixel in the ToF measurement process also receives
an energy contribution from its neighbors (an effect typi-
cally called scattering) which near discontinuities may have
quite different values. Hence a better model will be used
later in this section in order to account for scattering near
discontinuities. For each p ∈ Z , one can consider condi-
tional probability P [Z(p)|DT , CT ] as typical of probabil-
ity measurement processes where DT is the process of the
measurement andCT is the process describing the measure-
ment precision. At each pixel p ∈ Z , the error in the depth
measurement of a ToF camera can be mainly described as
the sum of the following error components [20]:

1. a thermal noise component, with Gaussian distribu-
tion;

2. a quantization error component;

3. a photon shot noise component, with Poisson distribu-
tion;

4. a scattering generated noise component especially in
presence of depth discontinuities.

The main error components are the thermal noise, and, in
presence of depth discontinuities, the scattering generated
noise. The other error components can be neglected or ap-
proximated as a part of the thermal noise. The thermal noise
is characterized by a normal distribution with zero mean
and variance σ2

t . An estimate of σ2
t can be obtained from

the confidence map CT evaluated at the considered pixel p.
High values of the confidence map CT mean low values of
σ2
t and vice-versa. The scattering generated noise does not

have a predictable distribution. Following the model intro-
duced in [3], it is assumed to be characterized by a normal
distribution with zero mean and variance σ2

s that is the vari-
ance of the measured depths in the second order neighbor-
hood of the considered pixel p.
As stated before, near discontinuities the thermal noise
component can be neglected, while far from discontinu-
ities it is the scattering generated noise component that can
be neglected. For the above reasons, posterior probability
P [Z(p)|IT ] can be expressed as:

P [Z(p)|IT ] ∼ N (d, σ2
w); (8)

where d is the value of DT at the pixel p, and σw =
max(σt, σs). For practical purposes, in order to reduce the
time complexity of the algorithm, one may crop the distri-
bution within interval Ps = [d − 3σw, d + 3σw], called
the “practical support ” of the ToF probability distribution,
since P [Z(p) ∈ Ps] = 0.997.

3.2. Stereo pair model

While a distribution model for the ToF camera poste-
rior probability can be proposed on the basis of well known
physical quantities, for the stereo pair only a heuristic , nev-
ertheless reasonable, probability model for P [Z|IL, IR] can
be obtained. As in the case of the ToF, the random field Z
can be considered as the juxtaposition of per-pixel measure-
ments Z(p) for each p ∈ Z . For each p ∈ Z , the poste-
rior probability P [Z(p)|IL, IR] relates probability of depth
values Z(p) with the similarity between IL and IR in the
neighborhood of the point projections into the same images.
In order to derive very precisely the proposed model, one
must first of all identify the occluded pixels in both IL and
IR. The occluded pixels can be approximately estimated
by first rendering the 3D reconstruction obtained from DT

from the view points of the images {IL, IR} and then by
comparing the depth of each p ∈ Z with the z-buffer of the
rendered scene in order to check if it is visible from the con-
sidered image. This approximation holds especially in the
case of a scene surface not to close to the acquisition system
and in the case of a setup with T positioned in between L
and R. This approximation is well suited especially in the
case of a scene surface not to close to the acquisition sys-
tem.
For each p ∈ Z occluded in IL or IR, the stereo poste-
rior probability can be assumed uniformly distributed in the
practical support of P [Z(p)|IT ], i.e.,

P [Z(p)|IL, IR] ∼ U([d− 3σw, d+ 3σw]). (9)

For each non-occluded pixel p ∈ Z , with coordinates [u, v],
the posterior probability P [Z(p)|IL, IR] can be computed
as a normalized matching cost of the stereo pair, by the fol-
lowing steps:
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1. The interval [d − 3σw, d + 3σw] is sampled with the
precision of the stereo pair, and then interpolated kint
times in order to have a sub-pixel precision, obtaining
a set of values zi(p), i = 1, ...,m. The experimental
results of this paper have been obtained with kint = 8;

2. All the points with coordinates [u, v] and depths
zi(p)]T , i = 1, ...,m, are back-projected and re-
projected into the images IL and IR at locations pL,i =
[uL,i, vL,i], i = 1, ...,m and pR,i = [uR,i, vR,i], i =
1, ...,m;

3. For each of the projected couple of points, a cost func-
tion Ci(p) is computed as the TAD (“Truncated Sum
of Absolute Differences”) inside an aggregation sup-
port Si(p), as for standard stereo pairs [23]:

Ci(p) = min

 ∑
mL,mR∈Si(p)

|IL(mL)� IR(mR)|, Th


(10)

where Th is the truncation threshold and:

|IL(mL)�IR(mR)| ,
∑

c=r,g,b

|IL,c(mL)−IR,c(mR)|,

(11)
in which {r, g, b} are the 3 color components of the im-
ages {IL, IR}. The aggregation support Si(p) is com-
puted for each pixel with a multiple windows approach
[6] in order to obtain very good results especially for
points very close to discontinuities;

4. Finally, for each depth zi(p), i = 1, ...,m, the proba-
bility P [Z = zi(p)|IL, IR] is computed, as proposed
in [25], as:

P [Z(p) = zi(p)|IL, IT ] =
e
− Ci(p)

σI∑m
i=1 e

− Ci(p)
σI

, (12)

where σI is the noise standard deviation in images
{IL, IR}.

3.3. Full model

The full probability model of the depth distribution in-
side the practical support [d− 3σw, d+ 3σw] can be finally
obtained by combining (7), (8) and (9) for occluded points:

P [Z(p) = zi(p)|IT , IS ] ∝
exp

[
− (zi(p)−d)2

2σ2
w

]
√

2πσ2
w

, (13)

and combining (7), (8) and (12) for non-occluded points:

P [Z(p) = zi(p)|IT , IS ] =
exp

[
− (zi(p)−d)2

2σ2
w

]
√
2πσ2

w

e
− Ci(p)

σI∑m
i=1 e

− Ci(p)
σI

(14)

The full model is the set of output distributions of the fusion
algorithm applied to each single pixel. It does not impose
any explicit global model or constraint to the depth distri-
bution Z. Hence, for each p ∈ Z , the best estimated depth
Ẑ(p) is selected as:

Ẑ(p) = argmax
zi(p)

P [Z(p) = zi(p)|IT , IS ], i = 1, ...,m,

(15)
where P [Z(p) = zi(p)|IT , IS ] is given by (13) for oc-
cluded points and by (14) for non-occluded points, as sum-
marized by the following pseudo-code:

Input: {DT , CT , IL, IR}
Output: Ẑ = {Ẑ(p),p ∈ Z}, estimation of the depth

distribution Z
foreach p ∈ Z do

σt = function of CT (p);
σs = std. deviation of DT in the 2-neighbor. of p;
σw = max(σt, σs);
zi(p) samples in [d− 3σw, d+ 3σw], i = 1, ...,m;
for i=1 to I do

calculate the ToF prob. as in eq. (8);
if (i framed by all {T, L,R} && p non-occl.)
then

calculate the Stereo prob. as in eq. (9);
calculate the joint prob. as in eq. (13);

else
calculate the Stereo prob. as in eq. (12);
calculate the joint prob. as in eq. (14);

end
select Ẑ(p) as the zi(p), i = 1, ...,m, that
maximizes the joint prob.;

end
end

Algorithm 1: Fusion algorithm pseudo-code

4. Experimental Results

In order to analyze the performance of the fusion
algorithm, some experiments on both synthetic and real
data have been performed.

4.1. Synthetic Scenes

Synthetic data offer the advantage of evaluating the
performance of the fusion algorithm against a ground
truth. A set of 8 scenes, generated in the Autodesk 3ds
MaxTMframework, (available at the url: http://lttm.
dei.unipd.it/downloads/3DPVT10/) is consid-
ered in order to analyze the performances on different sit-
uations. The scenes are framed by a synthetic acquisition
system, that simulates the real one.
The synthetic acquisition system is made by two synthetic
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standard RGB cameras {L,R}, with 8mm optics and hori-
zontal field of view of 33.4o, that acquire two RGB images
{IL, IR}, with a resolution of 1032×778, and form a stereo
pair S with a baseline of 20cm; and by a synthetic ToF cam-
era T , with focal of 10mm and horizontal field of view of
43.6o, that acquires a 16-bit depth map DT (depth image)
with near-plane set to 0, far-plane set to 5m and resolution
176 × 144. The synthetic ToF camera is positioned in be-
tween the synthetic standard cameras L andR. An example
of the acquired data is shown in Figure 2.

Figure 2. Images {IL, IR, DT }, acquired by the acquisition sys-
tem

In order to properly analyze the fusion algorithm perfor-
mance, a Gaussian noise component with zero mean and
variable standard deviation is added to all the three images
{DT , IL, IR}. With respect to the ToF camera T , the Gaus-
sian error is the synthetic version of the depth measurement
error. In the synthetic case, there is no confidence map CT ,
so σw is assumed equal to the standard deviation of the
added noise. The reconstruction error, after the fusion algo-
rithm application, is computed as the mean squared error of
the estimated depth distribution Ẑ with respect to the real
depth distribution. The reconstruction error performances
of the fusion algorithm as a function of the image noise is
compared against that of the ToF alone and of the stereo
system. Figure 3 shows quantitative results as a function of
the noise in the ToF data while image noise has a fixed stan-
dard deviation; Figure 4 refers instead to the opposite case.
Qualitative results are shown in Figure 5.

4.2. Middlebury Scenes

An interesting performance evaluation of the fusion al-
gorithm effectiveness can also be obtained by analyzing its
application on data coming from the classical Middlebury
repository [18]. The considered acquisition system is made
by full-resolution views 1 and 5 of the Middlebury frame-
work. In order to simulate the acquisition of an actual ToF
camera, the depth map is obtained by downsampling by a
factor of 10 the disparity image relative to view 1 and by
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Figure 3. Reconstruction error of the fusion algorithm compared
to the one of the ToF and of the stereo system. The abscissa rep-
resent the standard deviation of the noise in DT while the noise in
{IL, IR} has standard deviation σI = 0.05m.
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Figure 4. Reconstruction error of the fusion algorithm compared to
the one of the ToF and of the stereo system. The abscissa represent
the standard deviation of the noise in {IL, IR} while noise in DT

has standard deviation σw = 0.05m.

Figure 5. On the left: noisy depth image DT (noise standard de-
viation 0.02). On the right: estimated depth distribution Ẑ after
application of the fusion algorithm.

converting it into a depth map Z by applying to each pixel
the transformation:

z =
bf

d
, (16)

where d is the per pixel value of the disparity image, b is the
baseline of the stereo pair formed by the cameras acquiring
views 1 and 5, and f is the cameras’ focal. The depth map
Z obtained in this way is considered as the ground-truth. In
order to properly analyze the fusion algorithm performance,
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a Gaussian noise component with 0 mean and variable stan-
dard deviation is added to the depth Z. As in the case of
synthetic scenes, there is no confidence map CT , so σw is
assumed to be equal to the standard deviation of the added
noise.
The reconstruction error after the fusion algorithm appli-
cation is computed as mean squared error of the estimated
depth distribution Ẑ with respect to the depth distribution Z
of the Middlebury groundtruth.
The performance of the fusion algorithm is qualitatively
compared against that of the ToF alone in Fig. 6.

Figure 6. On the top, noise-free depth map. In the middle, noisy
depth map before the application of the fusion algorithm (noise
standard deviation σw = 0.05m). On the bottom, depth map after
the application of the fusion algorithm.

4.3. Real Scenes

A qualitative evaluation of the performance of the fusion
algorithm can be obtained by analyzing its application on
real scenes’ data.
The acquisition system is made by a ToF camera and two
standard BASLER scA1000TMRGB cameras {L,R}, with
8mm optics and horizontal field of view of 33.4o, that ac-
quire RGB images {IL, IR} with resolution 1032 × 778.
The standard cameras {L,R} form a stereo pair S with a
baseline of approximately 20cm. The Mesa Imaging Swis-
sRanger SR4000TMToF camera {T}, with a 10mm optics
and horizontal field of view of 43.6o acquires a 16-bit depth
image DT , with values in [0, 5m], a 16-bit amplitude image
AT , and a confidence map CT with integer values in [0, 8].
Data {AT , DT , CT } are framed with resolution 176× 144.
The ToF camera is positioned in between the standard cam-

eras L and R.
The calibration step is performed via 70 acquisitions of a
checkerboard with 28 suitable internal corners, and checker-
side of 11cm.
The compensation of radial and tangential distortions of
images {AT , DT , CT , IL, IR}, and the stereo rectification
of images {IL, IR} are performed by the OpenCV Library
[17]. The systematic error in the depth measurement per-
formed by T is compensated by a method of the Swis-
sranger Library [19]. The final error obtained after the
proposed calibration step, computed as average of the Eu-
clidean distance values between the 3D coordinates of all
the corresponding corners of the checkerboard estimated
with the ToF (PiT ) and by the stereo system (ML ∗ PiS):

1

n

n∑
i=1

||PiT −ML ∗ PiS ||2, (17)

is of 0.7cm. This is far better than the error obtained by
standard calibration techniques, that is of about 2.5cm, and
also better than the one obtained by the method proposed in
[7], that is of about 1.3cm.
Some experiments, based on repeated depth measurements
in situations with different values of CT , were performed in
order to correctly associate the confidence values of CT in
[0, 8], to the relative standard deviation σw of the error in
the depth measurement performed by T , obtaining the ap-
proximated values reported in Table 1. Some visual results
are reported in Figure 7 and Figure 8.

CT 0 1 2 3 4 5 6 7 8
σw[cm] 50 20 15 10 8 4 2 1 0.5

Table 1. Relationship between CT and σw.

Figure 7. Images {IL, IR} acquired by the stereo pair S.

5. Conclusions
This work proposes a novel probabilistic approach to

ToF and stereo data fusion. The preliminary system calibra-
tion task has been satisfactory solved, exploiting a closed-
form solution by means of the Horn’s algorithm that fully
exploits the features of the considered acquisition system.
After an adequate answer to system calibration, the work
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Figure 8. On top-left, raw depth map DT acquired by the ToF be-
fore fusion algorithm application; on top-right, depth map Ẑ ob-
tained after the fusion algorithm application; on the bottom, dif-
ference between DT and Ẑ.

derives a fusion algorithm in a probabilistic framework, un-
derlining all the considered assumptions.
Experimental results on data coming from real and synthetic
scenes show the effectiveness of the proposed algorithm for
ToF and stereo data fusion.
The generation of high resolution depth information and the
introduction of a more complex probability model, in order
to apply a global optimization step, will be the subject of
future work.
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