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ABSTRACT

The recent introduction of novel acquisition devices like the Leap
Motion and the Kinect allows to obtain a very informative descrip-
tion of the hand pose that can be exploited for accurate gesture recog-
nition. This paper proposes a novel hand gesture recognition scheme
explicitly targeted to Leap Motion data. An ad-hoc feature set based
on the positions and orientation of the fingertips is computed and fed
into a multi-class SVM classifier in order to recognize the performed
gestures. A set of features is also extracted from the depth computed
from the Kinect and combined with the Leap Motion ones in order to
improve the recognition performance. Experimental results present
a comparison between the accuracy that can be obtained from the
two devices on a subset of the American Manual Alphabet and show
how, by combining the two features sets, it is possible to achieve a
very high accuracy in real-time.

Index Terms— Depth, Gesture Recognition, Kinect, Leap Mo-
tion, SVM

1. INTRODUCTION

In recent years, hand gesture recognition [1] has attracted a grow-
ing interest due to its applications in many different fields, such as
human-computer interaction, robotics, computer gaming, automatic
sign-language interpretation and so on. The problem was origi-
nally tackled by the computer vision community by means of images
and videos [1, 2]. More recently the introduction of low cost con-
sumer depth cameras, like Time-Of-Flight cameras and Microsoft’s
KinectTM[3], has opened the way to several different approaches that
exploit the depth information acquired by these devices for improv-
ing gesture recognition performance. Most approaches recognize the
gestures by applying machine-learning techniques to a set of relevant
features extracted from the depth data. In [4] silhouette and cell oc-
cupancy features are used to build a shape descriptor that is then fed
to a classifier based on action graphs. Volumetric shape descriptors
and a classifier based on Support Vector Machines are used both by
[5] and [6]. [7] and [8] compare, instead, the histograms of the dis-
tance of hand edge points from the hand center in order to recognize
the gestures. Four different types of features are extracted and fed
into a SVM classifier in the approach of [9] and [10].

The recent introduction of the Leap Motion device has opened
new opportunities for gesture recognition. Differently from the
Kinect, this device is explicitly targeted to hand gesture recognition
and directly computes the position of the fingertips and the hand
orientation. Compared to depth cameras like the Kinect and similar
devices, it produces a more limited amount of information (only a
few keypoints instead of the complete depth map) and its interac-
tion zone is rather limited but the extracted data is more accurate
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Fig. 1. Pipeline of the proposed approach.

(according to [11] the accuracy is of about 200µm) and it is not
necessary to perform image processing tasks to extract the relevant
points. The Leap Motion software recognizes a few movement pat-
terns only, like swipe and tap, but the exploitation of Leap Motion
data for gesture recognition purposes is still an almost unexplored
field. A preliminary study referring to sign language recognition has
been presented in [12], while in [13] the authors use the device to
control a robot arm.

This paper presents the first attempt to detect gestures from the
data acquired by the Leap Motion. A set of relevant features is ex-
tracted from the data produced by the sensor and fed into a SVM
classifier in order to recognize the performed gestures. The same
gestures have also been acquired with a Kinect and this paper shows
both the comparison of the performance that can be obtained from
the data of the two devices, and how to combine them together to
improve the recognition accuracy.

The paper is organized in the following way: Section 2 intro-
duces the general architecture of the proposed system. Sections 3
and 4 present the feature descriptors extracted from Leap Motion
and Kinect data respectively. Then the classifying algorithm is de-
scribed in Section 5. Experimental results are in Section 6 and finally
Section 7 draws the conclusions.

2. GENERAL OVERVIEW

Fig. 1 shows a general overview of the two main pipelines in the pro-
posed approach, the left side refers to the Leap Motion and the right
one to the Kinect device. In the first step, the hand attributes are gath-
ered from the Leap Motion and the depth acquired from the Kinect.
Then a set of relevant features is extracted from the data acquired
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Fig. 2. Data acquired by the Leap Motion.

by the two devices. The two sensors provide different data, there-
fore different features set have been extracted from each of the two
sensors. Finally a multi-class Support Vector Machine classifier is
applied to the extracted features in order to recognize the performed
gesture.

3. FEATURES EXTRACTION FROM LEAP MOTION DATA

Differently from the Kinect and other similar devices, the Leap Mo-
tion does not return a complete depth map but only a set of relevant
hand points and some hand pose features. Fig. 2 highlights the data
acquired by the Leap device that will be used in the proposed gesture
recognition system, namely:

• Position of the fingertips Fi, i = 1, ..., N represent the 3D
positions of the detected fingertips (N is the number of rec-
ognized fingers). Note that the device is not able to associate
each 3D position to a particular finger.

• Palm center C roughly corresponds to the center of the palm
region in the 3D space.

• Hand orientation based on two unit vectors, h is pointing
from the palm center to the fingers, while n is perpendicular
to the hand (palm) plane pointing downward from the palm
center. However, their estimation is not very accurate and
depends on the fingers arrangement.

An important observation is that, while the computed 3D posi-
tions are quite accurate (the error is about 200 µm according to the
study in [11]), the sensor is not always able to recognize all the fin-
gers. Not only fingers touching each other, folded over the hand or
hidden from the camera viewpoint are not captured, but in many con-
figurations some visible fingers could be lost, specially if the hand
is not perpendicular to the camera. Furthermore, protruding objects
near the hand, like bracelet or sleeves edges, are easily confused by
fingers. This is quite critical since in different executions of the same
gesture the number of captured fingers could vary. Approaches sim-
ply exploiting the number of captured fingers therefore do not work
very well.

Note also that the current version of the Leap Motion software
does not return any information about the matching between the ac-
quired points and the corresponding fingers, therefore, values are
randomly ordered. In the proposed approach, we deal with this is-
sue by sorting the features on the bases of the fingertips angle with
respect to the hand direction h. This corresponds to sort them in
the order from the thumb to the pinky. In order to account for fingers
misalignment, as depicted in Fig. 3, we divide the plane described by
n and passing through C, into five angular regions Si, i = 1, ..., 5,
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Fig. 3. Angular regions in the palm plane.

and assign each captured finger to a specific region according to the
angle between the projection of the finger in the plane and the hand
direction h. Note that there is not a one-to-one matching between
sectors and fingers, i.e., some of the sectors Si could contain more
than one finger and others could be empty. When two fingers lie
in the same angular region, one of the two is assigned to the near-
est adjacent sector if not already occupied, otherwise the maximum
between the two feature values is selected.

All the features values (except for the angles) are normalized in
the interval [0, 1] by dividing the values for the distance between the
hand center and the middle fingertip S = ||Fmiddle−C|| in order to
make the approach robust to people with different hands of different
sizes. The scale factor S can be computed when the user starts to
use the system.

To this purpose we introduce the following features :

• Fingertips angle Ai = 6 (Fπi − C,h), i = 1, ..., 5, where
Fπi is the projection of Fi on the plane identified by n, are
the angles corresponding to the orientation of the projected
fingertips with respect to the hand orientation. The actual
number of captured fingers strongly affects the hand orienta-
tion h and so the fingertips angles. The obtained values Ai
have been scaled to the interval [0.5, 1] to better discriminate
the valid interval from the missing values that have been set
to 0. These values have also been used to assign each finger
to the corresponding sector.

• Fingertips distance Di = ||Fi − C||/S, i = 1, ..., 5, are
the 3D distances of the fingertips from the hand center. Note
that, as previously stated, there is at most one feature value
for each sector and the missing values has been set to 0.

• Fingertips elevation Ei = sgn((Fi − Fπi ) · n)||Fi −
Fπi ||/S, i = 1, ..., 5, represent the distances of the fingertips
from the plane corresponding to the palm region, accounting
also for the fact that the fingertips can belong to any of the
two semi-spaces defined by the palm plane. As for fingertips
distances, there is at most one feature value for each sector
and the missing values has been set to 0. Note that as for
the fingertips angles, the values range has been scaled to the
interval [0.5, 1]

4. FEATURES EXTRACTION FROM KINECT DATA

Gestures have been acquired with both a Leap Motion and a Kinect
device. For the features extraction from Kinect data, we employed
a pipeline made of two main steps, i.e., the hand is firstly extracted
from the acquired depth and color data and then two different types
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Fig. 4. Feature vectors extracted from the two devices.

of features are computed from the 3D points corresponding to the
hand. The extraction of the hand from color and depth data has been
performed using the approach of [9]: the analysis starts from the
closest point in the depth map and a thresholding on depth and 3D
distances is used to extract the candidate hand region. A further
check on hand color and size is performed to avoid to recognize
closer objects as the hand.

Then, two different types of features are extracted. For the first
set of features, an histogram of the distances of the hand points from
the hand center is built as described in [9], i.e.:

L(θq) = max
Xi∈I(θq)

dXi (1)

where I(θq) is the angular sector of the hand corresponding to the
direction θq and dXi is the distance between point Xi and the hand
center. For a detailed description of how the histogram are com-
puted, see [9]. A set of reference histograms Lrg(θ), one for each
gesture g is also built. Differently from [9] where the maximum of
the histograms were used, here the feature values are the maximum
of the correlation between the current histogram L(θq) and a shifted
version of the reference histogram Lrg(θ)

Rg = max
∆

ρ
(
L(θ), Lrg(θ + ∆)

)
(2)

where g = 1, ..., G. Note that the computation is performed for
each of the candidate gesture, thus obtaining a different feature value
for each of the candidate gestures. Ideally the correlation with the
correct gesture should have a larger value than the other features.

The second feature set is based on the curvature of the hand con-
tour. This descriptor is based on a multi-scale integral operator and
is computed as described in [9] and [10]. The multi-scale descrip-
tor is made of B × S entries Ci, i = 1, ..., B × S, where B is the
number of bins and S the number of employed scale levels.

5. GESTURE CLASSIFICATION

The feature extraction approach of Sections 3 and 4 provides five fea-
ture vectors, each describing relevant properties of the hand samples
extracted from the two sensors. In order to recognize the performed
gestures, the extracted features are used into a multi-class Support
Vector Machine classifier. Each acquired gesture is described by
two feature sets. The set Vleap = [A,D,E] contains all the fea-
tures extracted from Leap Motion data while the set Vkin = [C,R]
contains the features extracted from Kinect data. The complete fea-
ture set is obtained by concatenating the two sets [Vleap,Vkin].

In order to recognize gestures, the five features vectors and their
concatenation must be classified into G classes corresponding to the
various gestures of the considered database. The employed classifi-
cation algorithm exploits Support Vector Machines (SVM). A multi-
class SVM classifier [14] based on the one-against-one approach has
been used, i.e., a set of G(G− 1)/2 binary SVM classifiers are used
to test each class against each other and each output is chosen as

Fig. 6. Acquisition setup.

a vote for a certain gesture. The gesture with the maximum num-
ber of votes is selected as the output of the classification. A non-
linear Gaussian Radial Basis Function (RBF) kernel has been used
while the classifier parameters have been selected by means of a grid
search approach and cross-validation on the training set. Assume a
training set containing data fromM users, to perform the grid search
we divide the space of parameters (C, γ) of the RBF kernel with a
regular grid and for each couple of parameters the training set is di-
vided into two parts, one containingM−1 users for training and the
other one the remaining user for validation and performance evalu-
ation. We repeat the procedure changing each time the user used
for the validation and we select the couple of parameters that give
the best accuracy on average. Finally we train the SVM on all the
M users of the training set with the optimal parameters. Alternative
classification schemes also based on SVM for this task have been
proposed in [15].

6. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed approach, we
acquired a dataset of gestures using the setup of Fig.6. It is available
at http://lttm.dei.unipd.it/downloads/gesture.
The performed gestures have been acquired at the same time with
both a Leap Motion device and a Kinect sensor. The database con-
tains 10 different gestures (see Fig.5) performed by 14 different
people. Each gesture is repeated 10 times for a total of 1400 dif-
ferent data samples. For each sample, Leap Motion data reported
in Section 3 have been acquired together with the depth maps and
color images provided by the Kinect.

Table 1 shows the accuracy obtained from the Leap Motion and
Kinect data using the classification algorithm of Section 5. Fingertip
distance features allow to obtain an accuracy of about 76%, they are
able to recognize the majority of the gestures but G2 and G3 are eas-
ily confused. This is due to the limited accuracy of the hand direction
estimation from the Leap Motion software that causes an unreliable
matching between the fingertip of these gestures and the correspond-
ing angular region. This inaccuracy is partially solved with the other
two features but a slightly lower overall accuracy is obtained: 74.2%
from the fingertip angles and 73% from the elevations. An inter-
esting observation is that the 3 feature descriptors capture different
properties of the performed gesture and by combining them together
it is possible to improve the recognition accuracy, e.g., by combining
distances and elevations, an accuracy of about 80% can be reached.
By combining all the 3 features together, 81% of accuracy can be
obtained, and this represents the best accuracy that can be extracted
from Leap Motion data with the proposed approach.

Kinect data contain a more informative description (i.e., the
complete 3D structure of the hand) but they are also less accurate
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Fig. 5. Gestures from the American Sign Language (ASL) contained in the database that has been acquired for experimental results.

and provide a lower-level scene description. Furthermore, the ac-
quired data need to be preprocessed in order to segment the hand
from the scene for features extraction. Correlation features allow to
recognize a good number of gestures but the 65% accuracy is the
lowest among the considered descriptors. As reported also in [9],
curvature descriptor is instead a very accurate representation of the
hand shape that allows to obtain a very high accuracy of 87.3%.
It is the best single descriptor among the considered ones. Even if
the performance of correlation is not too good, by combining this
descriptor with the curvature it is possible to improve the results of
the latter descriptor obtaining an accuracy of 89.7%. This is a proof
of the good performance of the proposed machine learning strategy,
that is able to obtain good results even when combining descriptors
with very different performance, without being affected by the less
performing features.

Table 2 reports the result obtained by combining all the vari-
ous features from the two sensors. The complementarity of their
descriptions is demonstrated by the optimal accuracy of 91.3% that
is obtained. Even if the Kinect as a single sensor has better perfor-
mance, the combined use of the two devices allows to obtain better
performance than each of the two sensors alone.

Leap Motion Kinect
Feature set Accuracy Feature set Accuracy

Fingertips distances (D) 76.07% Curvature (C) 87.28%
Fingertips angles (A) 74.21% Correlation (R) 65.00%

Fingertips elevations (E) 73.07%
D + A 78.78% C + R 89.71%
E + A 77.28%
D + E 80.20%

D + A + E 80.86%

Table 1. Performance of Leap Motion and Kinect features.

Feature set Accuracy
D + A+ E + C + R 91.28%

Table 2. Performance from the combined use of the two sensors.

Finally, Table 3 shows the confusion matrix when all the five
features are combined together. The accuracy is over 90% for all

the gestures but G6, G8 and G10, that are the gestures that more
frequently fail the recognition. From this table it can also be noticed
that gestures G2 and G3 that were critical for the Leap Motion, reveal
a very high accuracy when recognized from both the devices.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 0.99 0.01
G2 0.96 0.03 0.01 0.01
G3 0.02 0.96 0.01 0.01
G4 0.01 0.01 0.91 0.01 0.01 0.03 0.01
G5 0.03 0.01 0.94 0.01 0.01
G6 0.01 0.01 0.02 0.86 0.04 0.07
G7 0.01 0.02 0.01 0.01 0.90 0.05
G8 0.03 0.07 0.86 0.04
G9 0.01 0.01 0.97 0.01
G10 0.01 0.19 0.03 0.78

Table 3. Confusion matrix for the complete features set. Yellow
cells represent true positive, while gray cells show false positive with
failure rate greater than 5%.

7. CONCLUSIONS

In this paper two different gesture recognition algorithms for the
Leap Motion and Kinect devices have been proposed. Different fea-
ture sets have been used to deal with the different nature of data
provided by the two devices, the Leap Motion provides a higher
level but more limited data description while Kinect provides the
full depth map. Even if the data provided by the Leap Motion is not
completely reliable, since some fingers might not be detected, the
proposed set of features and classification algorithm allows to obtain
a good overall accuracy. The more complete description provided by
the depth map of the Kinect allows to capture other properties miss-
ing in the Leap Motion output and by combining the two devices a
very good accuracy can be obtained. Experimental results show also
that the assignment of each finger to a specific angular region leads
to a considerable increase of performance.

Future work will address the joint calibration of the two devices
in order to compute new features based on the combination of the
3D positions computed by the two devices, and the recognition of
dynamic gestures with the two sensors.
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