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Abstract Three dimensional reconstruction of cultural heritage objects is an
expensive and time-consuming process. Recent consumer real-time depth ac-
quisition devices, like Microsoft Kinect, allow very fast and simple acquisition
of 3D views. However 3D scanning with such devices is a challenging task
due to the limited accuracy and reliability of the acquired data. This paper
introduces a 3D reconstruction pipeline suited to use consumer depth cameras
as hand-held scanners for cultural heritage objects. Several new contributions
have been made to achieve this result. They include an ad-hoc filtering scheme
that exploits the model of the error on the acquired data and a novel algorithm
for the extraction of salient points exploiting both depth and color data. Then
the salient points are used within a modified version of the ICP algorithm that
exploits both geometry and color distances to precisely align the views even
when geometry information is not sufficient to constrain the registration. The
proposed method, although applicable to generic scenes, has been tuned to
the acquisition of sculptures and in this connection its performance is rather
interesting as the experimental results indicate.

Keywords 3D Reconstruction · Kinect · ICP · Depth Map

1 Introduction

Three dimensional descriptions of cultural heritage objects play useful roles
in many different applications such as restoration, evaluation of the conser-
vation state and virtual visits. Unfortunately most approaches for building
3D representations require expensive hardware and a large amount of highly
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skilled labor and are not affordable for many cultural heritage institutions typ-
ically fighting with budget issues. In particular active methods, most notably
implemented by laser and structured light scanners for small objects and by
time-of-flight scanners for larger architectural structures allow to obtain very
accurate and detailed reconstructions. On the other side this type of scanning
equipment is very expensive, the acquisition process is rather time consuming
and the registration and the fusion of the various acquired views into a single
3D object is a challenging technical problem usually requiring a lot of manual
interaction. The main alternative is to use passive methods, like stereo vision
approaches, shape-from-silhouette or structure from motion. These methods
allow to reconstruct the 3D shape of an object from a collection of pictures,
thus avoiding the use of expensive hardware but most of such methods have
several limitations and are typically neither as robust nor as accurate as the
active methods.

The recent introduction of real-time consumer depth acquisition devices,
like Microsoft Kinect or Time-Of-Flight cameras, has made the acquisition of
3D views much faster and simpler than before. Unfortunately these devices
suffer several issues, like high noise level, limited resolution and artifacts in
proximity of edges, that reconstruction algorithms must take into account. On
the other hand their ability to acquire data at interactive frame-rates makes
possible to acquire large numbers of views in very short times. The availability
of views much closer than the ones used in typical 3D registration pipelines
with data from laser or structured light scanners at the same time is a major
advantage with respect to registration since it is possible to use short-baseline
approaches much more reliable and faster than their long-baseline counterparts
and a critical issue for computation and memory requirements.

Nevertheless consumer depth acquisition devices can make 3D acquisition
much simpler and cheaper, thus really opening the way to the usage of 3D data
in fields like cultural heritage. This work follows this rationale and present a
3D reconstruction pipeline explicitly targeted to consumer depth cameras.
The proposed scheme, which extends the approach of [5] and applies it to
cultural heritage, allows to automatically obtain accurate textured 3D models
from the data acquired by the Kinect camera or similar devices (e.g., Asus
Xtion or Time-Of-Flight cameras). A very commonly used approach for the
registration of multiple views is the ICP algorithm [4], that computes the
rototranslation between couples of views by assuming that each point in one
view correspond to the closest one in the second view, then iterates the process
by computing a new set of correspondences on the aligned views and continues
until the optimal registration is obtained. As [21] and other approaches, the
proposed method uses the ICP algorithm but, with respect to previous works
it introduces new elements in order to adapt the reconstruction pipeline to the
characteristics of the Kinect data and to exploit the color information acquired
by the device not only for texturing but also for registration purposes. Firstly
an ad-hoc filtering scheme is used in order to reduce the noise level and to
remove the most common artifacts typically affecting the data acquired by
the Kinect (note how this step has been largely improved with respect to [5]).
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Then the salient points are extracted and used in a modified version of the
ICP algorithm.

A new important element, not present in previous works, is the use of color
information acquired by the video-camera not only for texture reconstruction
but also to improve the extraction of salient points and the geometry recon-
struction. This allows to obtain reliable reconstructions also on flat smooth
surfaces lacking relevant features for 3D registration.

The paper is organized as follows: the related work is presented in Section 2,
the proposed reconstruction pipeline is described in Section 3, the experimental
results are given in Section 4 and Section 5 draws the conclusions.

2 Related works

3D scanning of cultural heritage has long been an active research field and a
huge number of different approaches have been presented. Extensive reviews
can be found in [22] and [26]. As previously noted, the available methods can
be divided between active and passive methods. Active methods have been ap-
plied to a large number of hardware devices based on laser scanners, structured
light systems or time-of-flight lidar systems for larger scenes. From the Digital
Michelangelo project [19] on , several research projects have been devoted to
the construction of software and hardware solution suitable to the acquisition
of complex heritage works. In particular a great effort has been devoted to
the development of effective solutions for the so-called 3D modeling pipeline,
i.e. the fusion of the views and pictures acquired by the various sensors into a
single textured 3D object. A detailed description of this process and a review
of the various available methods can be found in [3]. However 3D modeling
of cultural heritage objects typically requires considerable manual interaction
even if some automatic registration schemes for cultural heritage objects have
been proposed [1]. On the other side passive methods allow to perform 3D
reconstruction using only pictures of the scene. Stereo vision approaches [28]
are one of the most commonly used solution, see [24] for their usage in the cul-
tural heritage field. Other commonly used schemes are shape-from-silhouette
[18] for small objects and structure from motion for large scenes [20]. The lat-
ter approach has attracted a lot of interest in recent years due to projects like
Microsoft’s Photosynth [31] aiming at the usage of large collection of pictures
available on the web for 3D reconstruction purposes. There are also hybrid
methods combining image-based passive methods and active light scanners,
e.g. the approach proposed by Hakim et al. [10].

As previously noted the introduction of consumer depth cameras has re-
cently opened the way to a new research field trying to exploit their data for
3D scanning purposes. The Kinect and other similar devices have been widely
used in setups with a fixed camera acquiring moving people or objects for
dynamic 3D acquisition and human motion tracking [29]. On the other side
their employment for the reconstruction of static 3D scenes is still an open
issue since, as pointed out in recent studies on these devices, e.g. [15] or [9],
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they have several impairing issues including high noise level, limited spatial
resolution and edge artefacts.

Among the research projects which have investigated this task, Microsoft’s
KinectFusion [21] is probably the most relevant. In this project each frame ac-
quired by the Kinect is registered in real-time using the ICP algorithm [4] over
the complete 3D scene description reconstructed by a variation of the volumet-
ric truncated signed distance function (TSDF). The approach of KinectFusion
allows accurate reconstructions, but the large amount of memory needed limits
its application to small scenes. E.g., “KinFu”, the implementation contained
in the PCL library [23] is limited to a 3 × 3[m] area. Kinect Fusion has also
been extended in the Kintinuous project [36]. In a recent work by Henry et
al. [12] both geometric and visual features are used for the reconstruction of
indoor environments from the Kinect data. A super-resolution scheme and a
probabilistic approach are used for 3D reconstruction from Kinect and Time-
Of-Flight data in [7]. Another research project [34] aims at capturing full
3D human body models using 3 Kinects. This approach is able to register the
various body parts under non-rigid deformations. Furthermore commercial ap-
plications exploiting the Kinect for 3D reconstruction are now appearing, e.g.,
ReconstructMe [25] or Skanect [30]. These applications are typically able to
capture full color 3d models of objects, people or rooms. However reconstruc-
tion accuracy is not always satisfying.

Similar results can also be obtained from Time-Of-Flight (ToF) cameras in
place of the Kinect, e.g., in [6] a probabilistic approach based on Expectation
Maximization (EM) is used to combine and align the acquired views. Color
cameras can also be employed together with the depth sensors in order to
improve the reconstruction accuracy. In [37] the data acquired by the ToF
sensor are firstly used to reconstruct a coarse 3D representation of the scene
by a volumetric approach. Then the data from multiple color cameras are
used in order to improve the reconstruction by enforcing a photoconsistency
measure and silhouette constraints.

Two approaches for the registration of 3D views are described and evalu-
ated in [17]. The first approach is based on RGB images and estimates a sensor
pose using image features, while the second uses only geometrical information.
The results show that image-based registration method is particularly suitable
to scenes with texture, while the object space-based method, although able to
work on scenes without texture requires an adequate amount of geometric
information in the scene. Such a complementary behaviour suggests that ge-
ometry and texture should be combined in order to provide a highly reliable
method, as proposed in this paper.

3 Geometry reconstruction pipeline

The proposed 3D reconstruction pipeline, shown in Fig. 1, is made by 4 basic
steps: in the first step each depth map acquired by the Kinect is registered
together with color data in order to associate a color value to each 3D point.
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The depth map is then filtered and polished in order to remove typical acqui-
sition artifacts of the employed sensor. In the next step the salient points are
extracted from the point cloud on the basis of both depth and color data; the
saliency information is used in the following step where the acquired views are
aligned together by a modified ICP algorithm which also exploits color and
geometry together; in the final post-processing stage the surface is simplified
and polished and color data from the various views are fused to get the final
color representation.
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salient pointsRGB data

3D data fusion

Color and geometry
ICP

Depth data Colored
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Color/geometry
registration
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Fig. 1 Architecture of the proposed system

3.1 Pre-processing of depth information

In this work we assume that a sensor capable to acquire both color and depth
data is available (devices like the Kinect or Asus’ Xtion include both a depth
and a color camera). Such data can also be obtained by combining a Time-Of-
Flight sensor with a standard color camera. Before any acquisition the depth
camera (e.g., the IR camera in the case of the Kinect) and the color camera
must be calibrated. In the case of the Kinect both the intrinsic parameters
of the two cameras and the extrinsic parameters relating the depth and color
sensor can be computed by the approach of Herrera et al. [13]. For Time-Of-
Flight and camera setups ad-hoc approaches exist, e.g., [8]. The calibration
parameters of the depth and color cameras and the relative position between
them are used to compute the samples position in 3D space and to reproject
color data over the depth information. Color data are also converted to the
CIELAB color space. In this way the acquisition produces a set of colored 3D
points pi = (Xpi , Ypi , Zpi , Lpi , api , bpi), i = 1, .., N , where (Xpi , Ypi , Zpi) are
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the spatial 3D coordinates of pi and (Lpi , api , bpi) its color components in the
CIELAB space.

It is worth noting that the 3D views acquired by the Kinect with respect
to those acquired by standard 3D structured light or laser scanners are char-
acterized by limited accuracy, high noise levels and by the presence of many
erroneous depth samples. For all these reasons it is necessary to pre-process
the acquired data before using them in the 3D reconstruction process. The pro-
posed method encompasses 2 basic steps. In the first the depth information
acquired by the Kinect is filtered in order to reduce the amount of noise. Bi-
lateral filtering [33] is very effective for smoothing the acquired surfaces while
preserving the edges. The filter behaviour in the spatial and range domains
is controlled by two standard deviations, denoted as σd and σr respectively.
The bilateral filter preserves edges larger than σr and tends to average across
smaller discontinuities. It also averages structures thinner than ∼ 2σd. The
two parameters thus allow to trade-off between noise removal and the preser-
vation of the structures in the depth map. Unfortunately setting them in a
way that is optimal for the various image regions, specially if the image (or
the depth map in our case) has different noise levels in different regions, is a
challenging problem.

In the case of Kinect data, the resolution in the z direction (i.e., the direc-
tion corresponding to the optical axis) decreases quadratically with the dis-
tance from the sensor since the Kinect working principle is based on disparity
estimation [9] and, as well known, depth is inversely proportional to disparity.
This observation holds also for stereo vision systems and many other structured
light depth cameras exploiting similar principles. The z quantization issue can
be easily appreciated by acquiring some sample surfaces by the Kinect [16]: at
1[m] the spacing between the points in the z direction is quite small (about
2[mm]) but it rapidly increases and at 3[m] the quantization of z values is
quite evident (the spacing is 2.5[cm]). At 5[m] the situation is even worse with
a z spacing of 7[cm]. As reported in [11] the quantization relationship between
the distance and the quantization step is the following:

q(z) =
2.73z2 + 0.74z − 0.58

1000
(1)

Hence also the error random component increases with the distance. Therefore
it makes sense to use different filtering parameters at different distances. We
developed an adaptive bilateral filtering scheme where the size of the window
and the standard deviation of the two components of the bilateral filter dy-
namically change with the distance of the considered points. The basic scheme
is the same of the standard bilateral filter, except that the filtering parameters
depend on the depth of the considered point, i.e.:

ẑj =

∑
i∈Wj(zj)
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where Wj(zj) is the square window used for the filter computation, dd(i, j)
and dr(i, j) are the distances between sample (i, j) and the window center in
the spatial and range domain respectively and Nf is a proper normalization
factor computed as in [33]. Differently from the standard bilateral filtering
approach the two standard deviations σd and σr in Eq. (2) are not constant
values but depend on the distance from the sensor according to:

σd = Kdz
2
j (3)

σr = Krz
2
j (4)

For simplicity we considered only the second order term in (1) while the two
parameters Kd and Kr have been set according to the error model presented in
[16]. This filter has a stronger behaviour at larger distances where Kinect data
are less accurate and a milder one at closer distances. In particular it removes
the quantization noise on farther surfaces without affecting too much the closer
ones, are already quite accurate. Fig. 2 shows a top view of the acquisition of a
room corner before and after the application of the proposed modified bilateral
filter. The proposed filter can clearly restore the proper shape of the planar
surfaces affected by quantization artifacts and sensor noise. At the same time
the sharp edge between the two surfaces is preserved.

a) b)

Fig. 2 View of a room corner from the top: a) before applying the proposed filter; b)
after filtering by the proposed approach. The red dotted line shows the actual profile of the
acquired wall.

In the second step a moving window Wpi of size k × k is first centered on
each sample pi of the acquired depth map (the experimental results of Section
4 use k = 3). The set Spi = {p′ ∈ Wpi ∧ |Zp′ − Zpi | < Tz} of the samples
in the window with a depth value similar to the one of the considered point
pi is then computed. If the number of samples in Spi is large enough (i.e.,
|Spi | > 0.8|Wpi |) the point pi is considered valid, otherwise it is discarded
since the point is either on a too slanted surface or it is an isolated point. This
thresholding is used to remove unreliable depth values, specially in proximity
of edges where the Kinect data is less reliable.

Finally the surface normals npi are estimated for each point pi using the
robust and efficient border- and depth-dependent smoothing scheme of [14]
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(the normals will play an important role for salient point extraction). Since
the acquired data are not reliable on slanted surfaces, they are also thresholded
based on the angle between the surface normal and the viewing direction. In
order to exclude points corresponding to surfaces too slanted with respect to
the viewing direction a point p is kept only if np · (−v) > T .

3.2 Extraction of salient points

The employed registration algorithm requires to select a subset of the acquired
points to compute the roto-translation matrix between each couple of consec-
utive views. This step is particularly critical in the proposed setup since the
data acquired from the Kinect have many unreliable points that can impact
on the computed registration parameters. Furthermore it is not possible to
process in real-time too large amounts of samples. In order to obtain an ac-
curate real-time reconstruction it is necessary to extract a small subset of the
original points both reliable and meaningful for registration purposes.

To achieve this target a saliency metric measuring the usefulness of each
point for registration purposes is proposed. The idea is that the more distinc-
tive points (i.e., the ones either in regions of articulated geometry or of high
color variance) are the most salient ones.

For what concerns geometry information, the curvature of the local surface
was used as the distinctivity measure (as suggested by [35]). The idea is that
points corresponding to high curvature regions can be considered more dis-
tinctive since they force tighter bounds on the surface alignment. In particular
the normal npi to the surface at each point pi is compared to the normals of
the close samples (i.e., the samples in a window Wpi surrounding pi) in order
to compute the set

Api = {(p′ ∈Wpi) ∧ (np′ · npi > Tg)}. (5)

Api is the set of the points for which the surface normals np′ form an angle
smaller than arccos(Tg) with the normal npi of point pi. The cardinality of
Api is therefore inversely proportional to the local curvature of the surface
surrounding the selected point. Note that the point p itself is included in the
computation in order to ensure that |Api | ≥ 1. Note how a large value of |Api |
corresponds to samples in flat regions, not very informative for registration
purposes. Samples with small |Api | are typically associated to edges, corners
and high curvature regions. These points represent tighter bounds for the
surface alignment. On the other side, they also have the risk of being less
reliable since the acquired data can be less reliable close to edge or corners,
but notice how edge points have been processed by the filtering scheme of
Section 3.1. In order to avoid to use samples in the middle of smooth regions,
samples with |Api | > |Wpi |/2 +

√
Wpi are excluded from the salient point set

and their distinctivity is set to 0. Note how, as shown in Fig. 3 |Api | = Wpi/2 is
the typical value for edge points, the rationale for the threshold value is to keep
edge samples or samples with a comparable saliency. On the other side a low
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value of |Api | is usually associated to isolated points typically unreliable or to
artifacts due to noise. We decided to exclude points for which |Api | < |Wpi |/4
(note how a quarter of the window size is the region covered by the considered
surface in the case of a typical corner, as shown in Fig.3). The geometric
distinctivity measure is therefore computed as the inverse of the cardinality of
Api , i.e.:

Dg(pi) =


0 if |Api | ≤ |Wpi |/4
1/|Api | if |Wpi |/4 ≤ |Api | ≤ |Wpi |/2+

√
|Wpi |

0 if |Api | ≥ |Wpi |/2 +
√
|Wpi |

(6)

since 1 ≤ Ap ≤ k2 (where k is the size of the window Wp), Dg(p) is included
in the range 1/k2 ≤ Dg(p) ≤ 4/|Wpi |, i.e., larger Dg(p) = 4/|Wpi | corresponds
to the most salient points and Dg(p) = 1/k2 to quite flat regions.

Fig. 4 shows an example of the computation of geometric distinctivity on
a sample 3D view for different values of the threshold Tg.

a) b) c)

Fig. 3 |Api | in different situations: a) On edge samples |Api | ' |Wpi |/2; b) On corner
samples |Api | ' |Wpi |/4; c) On isolated samples |Api | is very small.

a) b) c)

Fig. 4 Geometric saliency corresponding to different values of Tg . a) Color view; b) Geo-
metric saliency for Tg = 0.22; c) Geometric saliency for Tg = 0.44; Darker points correspond
to larger values of Dg(pi).

With respect to color information let us recall that a uniform color space,
such as CIELab, ensures the consistency of the distance measurements between
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the different color components, i.e., it ensures that the euclidean distance in
the color space corresponds to the perceived color difference. Furthermore,
since the L component of the CIELab color vector (i.e., the luminance), is
strongly affected by the viewing direction, specially on reflective surfaces and
in presence of non-uniform illumination, it has not been considered in the
proposed algorithm and only the a and b components are used.
Similarly to the approach used for geometric information the window Wpi

around point pi is considered and the points with color properties similar as
those of pi are computed, i.e. we compute the set:

Cpi = {(p′ ∈Wpi) ∧ (
√

(api − ap′)2 + (bpi − bp′)2 < Tc)} (7)

where a′p and b′p are the a and b color components of point p′ in the CIELab
color space. The color saliency is given by the set of the points of Wpi with
color components (ap′ , bp′) similar to those of pi (also in this case pi is included
in the computation). If it belongs to a uniform color region the cardinality of
Cpi will be large. If pi belongs to regions with a complex texture pattern (more
suitable for registration purposes since color data can be used to properly align
the surfaces) |Cpi | will assume lower values. As for the case of geometry we
threshold the values in order to avoid points in uniform regions or in too
noisy areas. The color relevance of point pi (an example is shown in Fig. 5) is
computed as

Dc(pi) =


0 if |Cpi | ≤ |Wpi |/4
1/|Cpi | if |Wpi |/4 ≤ |Cpi | ≤ |Wpi |/2+

√
|Wpi |

0 if |Cpi | ≥ |Wpi |/2 +
√
|Wpi |

(8)

a) b) c)

Fig. 5 Color saliency corresponding to different values of Tc. a) Color view; b) Color saliency
for Tc = 7; c) Color saliency for Tc = 15; Darker points correspond to larger values of Dc(pi).

Finally geometry and color distinctivity are combined together. According
to the idea that a point is useful for registration purposes if it is able to bound
the registration either by using geometry or color constraints, the distinctivity
of a point is computed as the maximum of the color and geometric distinctivity:

Dp(pi) = max(Dg(pi), Dc(pi)) (9)
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Fig. 6 shows a couple of examples of the computed saliency values on two
sample scenes. In order to build the set Pi of the relevant points of view Vi
that will be used for the registration, a further constraint has been added
in order to force a reasonably uniform spatial distribution (i.e., in order to
avoid to have all the salient points concentrated in a spatial region of the
scene). Namely each acquired view is divided into quadrants of 40x40 pixels
by a regular grid on the Kinect depth map, i.e., the 640x480 depth map of
the Kinect is sub-divided into 16x12 = 192 quadrants. For each quadrant we
search for the Nq highest saliency points which will become the salient points
for the corresponding regions. If a quadrant contains Ni < Nq salient points
(e.g., because it corresponds to a flat and untextured region), the Ni salient
points are selected and the missing Nq − Ni points are taken from the other
quadrants by increasing their number of salient points (i.e., for the Kinect each
quadrant gets (Nq−Ni)/(16x12−1) extra salient points). For the experimental
results we used a total of Nd = 2880 salient points, i.e. Nq = 2880/192 = 15
points for each quadrant (less than 1% of the acquired samples).

a) b)

Fig. 6 Maximum of the color and geometric distinctivity Dp(pi) for two sample scenes
framing a set of shelves (a) and a ball object in our lab (b). Darker points correspond to
larger values of Dp(pi).

3.3 3D geometry registration with color-aware ICP

The Kinect sensor is used as an hand-held scanner and is moved around the
scene in order to acquire I frames each corresponding to a 3D view Vi, i =
1, .., N of the scene. The approach presented in the previous section can be
used to extract the set Pi of the relevant points in view Vi that will be used
as input for the registration algorithm. For the registration step we extended
the Iterative Closest Points (ICP) algorithm [4]. Notice that a well-known
drawback of this algorithm is the risk of falling into local minima, but since
the employed depth cameras can acquire at high frame rates, the views are very
close together and ICP can be applied directly to the acquired data without
the need of a preliminary coarse registration.
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The proposed approach is outlined in Algorithm 1. Firstly the relevant
points Pi of view Vi are extracted by the method of Section 3.2. Then a 5-
dimensional KD-tree is built where each sample has 5 dimensions, the 3 spatial
coordinates (x, y, z) and the two color components a and b of the corresponding
color value in the CIELAB color space. In order to allow the nearest neigh-
bour search on the 5 dimensional representation that includes two completely
different measurement spaces both the geometry and the color are normalized
by their standard deviations σg and σc. The color is then further multiplied
by a weighting factor (we experimentally set it to kcg = 1/7), i.e., each sample
is represented by the vector (x′, y′, z′, a′, b′), where:

x′ =
x

σg
y′ =

y

σg
z′ =

z

σg
a′ = kcg

a

σc
b′ = kcg

b

σc
(10)

A modified version of the ICP algorithm is then used to register the relevant
points Pi over the previously aligned view V r

i−1 of the scene. Various extensions
and variations of the ICP algorithm have been proposed in the literature [27],
in this work we used as the distance between corresponding point the distance
in the (x′, y′, z′, a′, b′) space, i.e., the distance depends on both the geometrical
distance in the (x, y, z) space and on the difference between the color of the
two samples. The search algorithm used to find the correspondence has also
been modified in order to use the 5-dimensional KD-tree and the improved
distance measure. After the ICP algorithm reaches the convergence the set
of relevant points Pi is analyzed and a new set P ′i is built by removing from
the Pi the samples for which a good correspondence has not been found, i.e.,
only correspondences with a distance smaller than a threshold Ticp in the
(x′, y′, z′, a′, b′) space are preserved.

The remaining set of points P ′i is then used inside a second ICP procedure
that performs a final refinement by using geometry information only. This
allows to obtain an accurate geometry alignment and at the same time to
avoid common ICP errors on regions or views with limited geometry details
where geometry information alone is not sufficient to constrain the registration.

Algorithm 1 Color-aware ICP procedure
1: Extract salient points
2: Construct the 5 dimensional KD-tree
3: Run ICP with color and geometry based distances
4: Remove outliers
5: Run refinement ICP with pruned set of salient points and geometry information only.

In order to understand how the proposed ICP algorithm with combined
color and geometry distance can improve the registration performance a more
detailed look to the registration process can be useful. If the two point clouds
have a large amount of geometry details standard ICP can be applied with
the euclidean distance in 3D space as shown in Fig. 7a. Unfortunately in the
acquisition of large scenes (e.g., the room in the experimental results) it is quite
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common to acquire large regions with just a large planar surface. Furthermore
the low accuracy and high noise level of the Kinect and of the other consumer
depth cameras makes difficult to constraint the registration on small objects
or surface details as is done with 3D views from laser scanners. In this case,
as shown in Fig. 7b, geometry information alone is not able to constraint the
registration. In particular the planar surfaces can “slide” one over the other
and the alignment is constrained only in the direction perpendicular to the
plane while the alignment in the direction parallel to the plane surface is
very unreliable. Fig. 8a shows an example of this problem on a real scene,
note how the objects attached to the planar wall surfaces clearly shows the
error accumulated in the registration process. In order to avoid the “sliding”
effect the proposed approach considers also the color in the computation of the
point distances in the registration algorithm. In the proposed algorithm the
search for the correspondences in the euclidean 3D space has been modified by
adding two further dimensions representing the color of the considered sample
(luminance has not been used since it is not very stable across the different
views, specially with reflective objects). In this way each point is related to the
point on the target view that is spatially close but also have a similar color.
Since on planar regions the salient points are typically selected on corner and
edges of the texture information this approach allow to precisely align the
edges of the objects in the color view and so to constraint the alignment even
in the cases where geometry information is very limited or unreliable due to
the low accuracy of the depth camera, as shown in Fig. 7c. Fig. 8b shows how
by using also color data the scene of 8a can be correctly reconstructed avoiding
the “sliding” effect. It is also interesting to notice that the use of salient points
only for the new view that is added at each step allows to both drastically
reduce the computation time and to improve the registration accuracy.

a) b) c)

Fig. 7 Alignment of a target point cloud T with an already registered source view S : a)
alignment of two scenes containing enough geometry information to constraint the registra-
tion; b) alignment of two planar surfaces with geometry information alone; c) alignment of
two planar surfaces with both color and geometry constraints.
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a)

b)

Fig. 8 Example of the reconstruction of a planar scene: a) Reconstruction with geometry-
based distance; b) Reconstruction using color and geometry-based distance.

3.4 Global optimization of the registered views

The procedure is iterated until all the acquired views are processed. By regis-
tering each couple of views one after the other a complete 3D reconstruction
is obtained but the registration error propagates and after registering several
hundred frames it typically become quite large (consider that the employed
consumer depth cameras are not very accurate). There exist many complex
global optimization schemes for the registration of 3D views, but in order to
handle very large number of views at the same time keeping very low memory
and computation time requirements a simple technique based on the Explicit
Loop Closing Heuristic (ELCH) method [32] has been used. During the regis-
tration process the algorithm stores in memory the viewpoint oJ , the viewing
direction vj and the centroid of the point cloud cj corresponding to each view
Vj . A graph of the connection between the different views is also built. Af-
ter registering a new view Vj the algorithms compares the viewpoint and the
viewing direction of Vj with the ones of the previously acquired views in order
to estimate if any other view has more than 70% super-imposition with Vj . In
order to make the computation very fast and to avoid to store in memory all
the acquired views, the estimation is done by looking only at the viewing di-
rections and at the viewpoint positions of the compared views. The set N (Vj)
of the views connected to Vj is given by:

N (Vj) = {Vk : |ok − oj | < Tpos(|cj − oj |) ∧ |vk · vj | < Tangle(|cj − oj |)} (11)
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Views VK and Vj are connected if the distance between the viewing positions
|ok − oj | is smaller than a threshold and if the angle between the two viewing
directions is smaller than another threshold. Notice how both thresholds are
not fixed but depend on the distance between the viewpoint and the object
centroid, in order to account for the fact that the same distance between the
viewpoint of the acquired views have a different impact depending on the
distance of the object from the camera. E.g., a 10[cm] translation is quite
relevant for the acquisition of an object at 50[cm] but much less for an object
that is at 5[m] from the camera. Similar considerations hold also for the angular
threshold Tangle. After computing which views are connected to Vj the graph
is updated and the algorithms check if the introduction of Vj has created a new
loop in the graph (i.e., in the chain of registered views) of length bigger than
a threshold Tloop. Threshold Tloop avoids the construction of too short loops
that may correspond just to roughly subsequent frames (for the results we set
Tloop = 50). If a loop is detected the ELCH algorithm is used to refine the
alignment of all the views involved in the loop by re-distributing the error in
the position of the two views that close the loop on all the chain of registered
views proportionally to the distance between the various views. This provision
avoids the propagation of errors through the registrations of large amount of
views.

3.5 Fusion of the geometry and color

After registering the new view over the previous acquired data it is necessary
to fuse together the two point clouds in order to reduce the number of samples
and to produce the final surface. For this task we firstly create a merged point
cloud containing all the samples from both Vi and Si−1. Then each point of
the set Vi ∪Si−1 is analyzed and if another point with a distance smaller than
a threshold tres (the threshold depends on the desired final model resolution)
is found then a single 3D point is kept. This simple fusion algorithm allows
reasonable performance within very limited computation time. Clearly offline
accurate reconstructions can afford more complex fusion schemes.

The proposed approach is focused on the reconstruction of an accurate
geometry, however color data also need to be added to the acquired geometry.
Each acquired sample has the associated color information, but in the fusion
step it is necessary to assign a color value to the samples obtained by merging
points coming from different views. For each 3D sample pi the corresponding
color value must be computed from the different color values of the various
points that have been merged into it. For this task a simple weighting function
W (pi, Vj) that represent the reliability of the color of pi in view Vj is built
depending on two clues:

– The first is the angle between the the normal npi of the surface at pi and
the viewing direction vj corresponding to the view Vj . The idea is that the
color data corresponding to the view in which the normal is better aligned
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with the viewing direction (i.e., the one that maximizes |npi · vj |) is more
reliable.

– Since specular reflections are typically associated to very high luminance
values, we underweight samples with a very high luminance value in pres-
ence of corresponding samples in other views with smaller luminance. More
precisely for luminance values greater than 200 (a [0, 255] luminance range
is considered) we linearly decrease the reliability of the acquired data.

The employed relevance function is thus the following:

W (pi, Vj) =
1

2
(|npi · vj |) +

1

2
min

(
1,

(255− L)

55

)
(12)

Finally the function W (pi, Vj) is used to compute a weighted average in
order to get the considered sample :

c =

∑
j R(pi, Vj)c(i, j)∑

j R(pi, Vj)
(13)

Notice how the proposed scheme is focused on the reconstruction of an
accurate geometry, this simple euristic allows to obtain a reasonable color
estimation but further research will be developed to the improvement of the
color reconstruction module.

4 Experimental results

The effectiveness of the proposed approach was tested on several different
objects and scenes. This section presents first some sample results on generic
objects and scenes and then a complete evaluation of the performance on a
set of statues in order to verify its applicability to cultural heritage data.

Experimental evaluation has been performed by acquiring several hundred
frames for each considered scene and object using the Kinect camera. A frame
rate of 10fps has been used and each acquired frame is made by a 640x480
depth map and a 1280x1024 color image (bilinear interpolation has been used
to assign the color values to the lower resolution depth information). Note
that this means that each scene or object has been acquired in just a couple of
minutes, i.e., much faster than any standard 3D scanning techniques. Further-
more part of the cultural heritage objects used for the evaluation have also
been acquired by a NextEngine 3D laser scanner and modeled by commercial
3D modeling tools in order to have a ground truth to validate the proposed
approach. Unfortunately the NextEngine has a very high accuracy but a lim-
ited acquisition range, so it was not possible to get ground truth data for the
rooms and for some of the larger objects.

Fig. 9 shows the reconstruction of a simple office scene. This scene has
quite limited texture information but relevant geometrical features that can
bound the registration. In this case the alignment process is robust both for the
proposed approach and for standard geometry-based schemes. This example
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Fig. 9 Reconstruction of a simple office scene (from 100 frames).

together with the one of Fig. 8b shows how the proposed approach is able to
exploit the correct clues when only one of the two types of information (either
color or geometry) is adequate.

Fig. 10 shows the reconstruction of a seated person obtained from about 800
frames acquired by moving the Kinect around the person. This case is slightly
more difficult than the previous one since corner-less shape can lead to errors in
alignment schemes based on geometry only. The proposed approach is instead
able to correctly reconstruct the shape of the person exploiting both geometry
and texture information. Note also that the scene around the acquisition place
is not light-controlled and there are reflections and shadows affecting the color
component of the distance measure employed by the ICP, but the choice of
ignoring lightness makes the proposed approach robust with respect to this
issue.

Fig. 11 shows our approach applied to a colored car. This scene is much
more challenging since the acquisition was made outdoor where sun-light in-
terferes with the IR pattern projected by the Kinect [9]. Furthermore the car’s
surface is very reflective and reflects the scene all around the car itself. The
car is also a large object requiring a larger number of frames (around 1300).
Finally the car shape has large uniform regions with very little features. The
picture on the left is a view of the back of the car 3D model, while the right
picture shows a lateral view of the 3D model with the roof purposely removed
in order to show the interior. The latter allows to recognize several elements
inside the car like the steering wheel and the seats. The feature extraction ap-
proach turns out to be fundamental to constrain the alignments in this scene,
since many frames have poor geometric and color information and only the
combined use of the two information sources permits a correct alignment. The
proposed approach can be applied not only to closed objects but also to open
scenes (a possibility not available for instance to many volumetric schemes that
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a) b)

c) d)

Fig. 10 Reconstruction of a seated person (from 800 frames).

a) b)

Fig. 11 Reconstruction of a Chrevolet Aveo (from 1300frames). a) View from the back;
b) side view with the roof purposely removed in order to show the interior.
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assume water-tight objects). Fig. 12 shows a section of the reconstructed sur-
face of the interior of our research lab performed from 800 frames. This scene is
particularly challenging since there are large flat surfaces (walls) without rel-
evant geometry information but with texture due to the posted pictures and
posters. Since the proposed approach exploits texture when geometry infor-
mation is completely lacking it gives a complete and accurate 3D model of the
scene. The left side is a good example of how color can bound the registration
in areas with just a flat wall that would have been very difficult to reconstruct
using geometry alone. Fig. 13 shows a larger section of the reconstructed 3D
scene from which one can also appreciate how the global optimization of Sec.
3.4 avoids the propagation of the registration error in large scenes.

Fig. 12 Section of the reconstruction of the LTTM research lab.

In order to evaluate the effectiveness of the proposed approach in the cul-
tural heritage field, we acquired a set of statues from the atelier of Gino Corte-
lazzo (1927-1985) [2], an Italian sculptor. The acquired artworks are of different
sizes and of different colors and materials, thus they represent a good testbed
of the objects of interest for the cultural heritage field. Some of them were
covered by a quartz crystals varnish that causes the surface to be not only
very irregular and so difficult to acquire but also very reflective making the
acquisition very challenging by any scanning device and not only by consumer
depth cameras. Table 1 shows the different characteristics of the various ac-
quired artworks. The size of the Clerk and Castle statues is rather large and
their acquisition by the commonly used active scanners require a great amount
of views and very long scanning and processing times, while with the proposed
method they were acquired and reconstructed in a few minutes.
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Fig. 13 Overview of the reconstruction of the LTTM research lab (from 800 frames).

Artwork Material Size Error RMS
[mm] (σ[mm]) ([mm])

Impiegato (Clerk) wood 1800x300x250 7.52 7.54
Civetta nera (Black Owl) polystyrene, quartz 600x500x200 7.49 7.8
Civetta rosa (Pink Owl) polystyrene, quartz 450x240x200 3.83 3.98

Donne e Gabbiano gypsum 550x500x500 5.13 5.21
(Women and Seagull)
Il Castello (The Castle) iron, quartz 1300x600x450 6.67 6.7

Table 1 Accuracy of the proposed approach on some sample artworks. All the reported
measures are in [mm]. Quartz denotes the covering by an epossidic quartz varnish.

The statues were acquired both by the proposed approach and by a Nex-
tEngine laser scanner in order to produce also a ground truth needed to vali-
date the proposed method. Fig. 14 shows the reconstructions obtained by the
proposed algorithm and the corresponding error maps. The proposed method
produces accurate reconstructions of the complex geometries of the different
artworks with accuracy ranging from around 3, 8[mm] to 7, 5[mm] depending
on the specific object. If the obtained results are compared with the quanti-
zation error of the Kinect of Eq. 1, considering that the sensor was held at a
distance of about a couple of meters from the acquired objects, it is possible to
notice that the obtained error is even smaller than the quantization step, i.e.,
the proposed approach is able to improve the accuracy by combining multiple
views. The Pink Owl is the most accurate object with a standard deviation
on the acquired points of just 3, 8[mm] in spite of the quartz varnish covering
it. This is in accordance with the fact that Pink Owl, given its small size, was
acquired with the sensor closer from it than the other objects. A very good
accuracy (about 5[mm]) has also been obtained on the Women and Seagull
since the material is much smoother and less reflective. Even if the quartz
crystals of the Pink Owl, Black Owl and Castle statues are very reflective and
the surface is very rough, the proposed reconstruction pipeline still obtains a
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a ) b) c)

Fig. 14 Example of reconstructed artworks: a) Image of the artwork; b) Snapshot of a 3D
mesh reconstructed from the computed point cloud; c) Error between the obtained point
cloud and the ground truth (the colormap goes from 0[mm] in the yellow regions to 30[mm]
in the red ones). Gray points are the ones for which no ground truth is available.
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good accuracy on them (around 7[mm]). Finally notice how even a quite large
object like the Clerk, that is almost 2[m] tall, can be acquired with an accuracy
comparable to the other ones (i.e., the obtained accuracy is always less than
0, 4% of the size of the object). Fig. 15 shows also some snapshots of colored
point clouds. The proposed algorithm properly assigns color data to the re-
constructed meshes, e.g., the Clerk in Fig. 15a. The Pink Owl (Fig. 15b) is
completely covered of reflective quartz crystals that are very difficult to acquire
with the low quality color camera of the Kinect. The results are reasonable but
not very impressive, for a better reconstruction of this challenging material an
high quality color camera should be associated to the Kinect. Finally notice
how the proposed scheme was able to acquire the semi-transparent alabaster
of the Metamorphosis statue of Fig. 15c that is very difficult to acquire with
standard methods like laser scanners.

a) b) c)

Fig. 15 Colored snapshots of some reconstructed artwork: a) Clerk; b) Pink Owl; c) Meta-
morphosis.

Since the proposed reconstruction algorithm is also able to acquire larger
scenes some rooms of the sculptor atelier were acquired. It was not possible to
acquire the ground truth for these scenes since they are too large to be acquired
with the available laser scanner. However Figs. 16 and 17 show some snapshots
of the performed reconstructions for two different rooms. The shelves on the
walls contain a lot of small objects and it is possible to notice how many small
details of their complex geometries were captured.

Fig. 18 shows instead two different wood sculptures (i.e., the Two Roosters
and Character artworks) in their current positions in the sculptor’s atelier.
The proposed approach is suited to perform the reconstruction of museums
rooms, showing that depth camera used as handheld scanners can reconstruct
museums environment very simply and rapidly thus obtaining valuable data
for virtual reconstruction without all the burden associated to the 3D modeling
of a large environment by standard approaches.

Finally some considerations on computation time and memory usage: for
global optimization of the registration our approach exploits on-line loop de-
tection together with the ELCH algorithm and is able to perform the opti-
mization keeping in RAM only the last two frames and the computed position
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Fig. 16 Snapshot of the reconstruction of the sculptor’s lab

Fig. 17 Snapshot of another room of the sculptor’s lab.

of the previously aligned frames, thus keeping the memory usage very low
and allowing to use a very large number of frames. Computation time require-
ments are also very limited. The current implementation has not been fully
optimized but it is able to process around 1 frame per second on a 2,4 Ghz In-
tel Q6600 processor. Notice that multi-threading has still to be included (i.e.,
the algorithm exploits a single core). By fully optimizing the code and employ-
ing multi-threading, besides eventually exploiting also the GPU, the proposed
approach will be able to run in real-time. This will allow reconstructing the
3D objects while the acquisition goes on thus allowing the user to control the
3D reconstruction results during the acquisition process. This is very useful
since the user can notice where holes and missing areas are and thus choose
an optimal acquisition path for the various views.
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a) b)

Fig. 18 Snapshots of a couple of artworks inside their setting: a) Due Galli (Two Roosters);
b) Personaggio (Character).

5 Conclusions

This paper proposes a novel solution for the 3D reconstruction of cultural
heritage objects allowing accurate three-dimensional reconstructions without
expensive hardware and time-consuming procedures. In particular the pro-
posed approach allows to use the Kinect as an handheld scanner for very fast
3D reconstructions. The proposed pipeline has been explicitly targeted to the
characteristics of the acquired data and is able to effectively exploit the side
information coming from the color camera. Color information has been used
both to extract salient points and to compute the distances between corre-
sponding points in the ICP algorithm. Quite notably the reliable extraction of
salient points allowed to use a smaller number of points in the registration pro-
cess greatly speeding-up the 3D reconstruction algorithm. The use of salient
points and color information in order to assist the registration process gives
reliable 3D reconstructions also in situations where geometry information is
not sufficient to constraint the registration. Experimental results proved the
effectiveness of the proposed approach in the acquisition of artwork of different
sizes and materials, often with accuracies even lower than the ones provided
by the employed sensor.

Further research will be devoted to improve the final fusion step with re-
spect to both geometry and color data. The final global alignment step will
be improved in order to increase the reconstruction accuracy together with
the realization of a more refined color fusion scheme. Finally the use of other
consumer depth cameras, e.g., the second generation of the Kinect sensor and
current consumer Time-Of-Flight sensor, will also be considered.



3D Scanning of Cultural Heritage with Consumer Depth Cameras 25

Acknowledgements We would like to thank Luca Palmieri for his contributions to the
color fusion algorithm. Thanks also to Fabio Dominio and Francesco Michielin for their help
in the acquisition of the experimental results data.

References

1. Andreetto M, Brusco N, Cortelazzo G (2004) Automatic 3d modeling of
textured cultural heritage objects. Image Processing, IEEE Transactions
on 13(3):354–369

2. Argan GC (2001) Il secondo Novecento - L’Arte Moderna. Sansoni
3. Bernardini F, Rushmeier H (2002) The 3d model acquisition pipeline. In:

Computer Graphics Forum, vol 21, pp 149–172
4. Besl PJ, McKay ND (1992) A method for registration of 3-d shapes. IEEE

Trans on PAMI 14(2):239–256
5. Cappelletto E, Zanuttigh P, Cortelazzo GM (2013) Handheld scanning

with 3d cameras. In: Multimedia Signal Processing (MMSP), 2013 IEEE
15th International Workshop on, pp 367–372

6. Cui Y, Schuon S, Derek C, Thrun S, Theobalt C (2010) 3d shape scanning
with a time-of-flight camera. In: In Proc. of CVPR 2010

7. Cui Y, Schuon S, Thrun S, Stricker D, Theobalt C (2013) Algorithms for
3d shape scanning with a depth camera. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 35(5):1039–1050

8. Dal Mutto C, Zanuttigh P, Cortelazzo G (2010) A probabilistic approach
to tof and stereo data fusion. In: 3DPVT, Paris, France

9. Dal Mutto C, Zanuttigh P, Cortelazzo GM (2012) Time-of-Flight Cam-
eras and Microsoft Kinect. SpringerBriefs in Electrical and Computer En-
gineering, Springer

10. El-Hakim S, Beraldin JA, Picard M, Godin G (2004) Detailed 3d recon-
struction of large-scale heritage sites with integrated techniques. Computer
Graphics and Applications, IEEE 24(3):21–29

11. Fossati A, Gall J, Grabner H, Ren X, Konolige K (eds) (2013) Consumer
Depth Cameras for Computer Vision: Research Topics and Applications.
Advances in Computer Vision and Pattern Recognition, Springer

12. Henry P, Krainin M, Herbst E, Ren X, Fox D (2012) Rgb-d mapping: Using
kinect-style depth cameras for dense 3d modeling of indoor environments.
Int Journal of Robotics Research 31(5):647–663

13. Herrera C D, Kannala J, Heikkil J (2012) Joint depth and color cam-
era calibration with distortion correction. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 34(10):2058–2064

14. Holzer S, Rusu RB, Dixon M, Gedikli S, Navab N (2012) Adaptive neigh-
borhood selection for real-time surface normal estimation from organized
point cloud data using integral images. In: Proc. of IROS, pp 2684–2689

15. Khoshelham K (2011) Accuracy analysis of kinect depth data. In: Proc.
of ISPRS Workshop Laser Scanning, vol 38

16. Khoshelham K, Elberink SO (2012) Accuracy and resolution of kinect
depth data for indoor mapping applications. Sensors 12(2):1437–1454



26 Enrico Cappelletto et al.

17. Khosravani A, Lingenfelder M, Wenzel K, Fritsch D (2012) Co-registration
of kinect point clouds based on image and object space observations. In:
Proceedings of LC3D Workshop

18. Laurentini A (1994) The visual hull concept for silhouette-based image
understanding. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 16(2):150–162

19. Levoy M, Pulli K, Curless B, Rusinkiewicz S, Koller D, Pereira L, Ginz-
ton M, Anderson S, Davis J, Ginsberg J, Shade J, Fulk D (2000) The
digital michelangelo project: 3d scanning of large statues. In: Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’00, pp 131–144

20. Mara H, Kampel M, Niccolucci F, Sablatnig R (2007) Ancient coins and
ceramics - 3d and 2d documentation for preservation and retrieval of lost
heritage. In: 2nd ISPRS International Workshop 3D-ARCH 2007

21. Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison A,
Kohli P, Shotton J, Hodges S, Fitzgibbon A (2011) Kinectfusion: Real-
time dense surface mapping and tracking. In: Proc. of IEEE ISMAR

22. Pavlidis G, Koutsoudis A, Arnaoutoglou F, Tsioukas V, Chamzas C (2007)
Methods for 3d digitization of cultural heritage. Journal of Cultural Her-
itage 8(1):93 – 98

23. PCL (2013) Point cloud library (pcl). http://pointclouds.org/
24. Pollefeys M, Proesmans M, Koch R, Vergauwen M, Van Gool L (2008)

Detailed model acquisition for virtual reality,. In: Virtual Reality in Ar-
chaeology, ArcheoPress, pp 71–77

25. ReconstructMe (2013) Reconstructme. http://reconstructme.net/
26. Remondino F (2011) Heritage recording and 3d modeling with photogram-

metry and 3d scanning. Remote Sensing 3(6):1104–1138
27. Rusinkiewicz S, Levoy M (2001) Efficient variants of the icp algorithm. In:

Proc. of 3-D Digital Imaging and Modeling, pp 145–152
28. Seitz S, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison

and evaluation of multi-view stereo reconstruction algorithms. In: Proc.
of CVPR, vol 1, pp 519 – 528

29. Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kip-
man A, Blake A (2011) Real-time human pose recognition in parts from
a single depth image. In: Proceedings of CVPR

30. Skanect (2013) Skanect. http://skanect.manctl.com/
31. Snavely N, Seitz SM, Szeliski R (2008) Modeling the world from internet

photo collections. Int J Comput Vision 80(2):189–210
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