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Abstract—This paper proposes a method for fusing data acquired by a ToF camera and a stereo pair based on a model for
depth measurement by ToF cameras which accounts also for depth discontinuity artifacts due to the mixed pixel effect. Such
model is exploited within both a ML and a MAP-MRF frameworks for ToF and stereo data fusion. The proposed MAP-MRF
framework is characterized by site-dependent range values, a rather important feature since it can be used both to improve the
accuracy and to decrease the computational complexity of standard MAP-MRF approaches. This paper, in order to optimize the
site dependent global cost function characteristic of the proposed MAP-MRF approach, also introduces an extension to Loopy
Belief Propagation which can be used in other contexts. Experimental data validate the proposed ToF measurements model and

the effectiveness of the proposed fusion techniques.

Index Terms—ToF, Stereo, Data Fusion, MAP-MRF, Loopy Belief Propagation, Mixed Pixels

1 INTRODUCTION

High quality depth estimation is an extremely chal-
lenging problem for which many different approaches
have been proposed. Among them stereo vision sys-
tems have attracted a lot of attention but they also
suffer well known reliability issues in case of lack-
ing texture and of repeated structures. Time-of-Flight
(ToF) cameras have recently introduced reliable depth
acquisition to the mass market but are also currently
characterized by limited spatial resolution and by
noisy depth measurements. Stereo vision systems and
ToF cameras operate on completely different basis,
therefore a proper fusion of their data can lead to
more accurate measurements than those of each single
system.

This paper proposes a data fusion framework based
on accurate models of the measures for the two
subsystems. It begins by introducing a novel error
model for ToF cameras measurements which takes
into account boundary-related issues so far either
ignored or only partially considered in current state-
of-the-art ToF models. In order to cope with the
depth discontinuities artifacts typical of ToF systems,
this paper also derives new inter-pixel and intra-
pixel measurements models for ToF cameras. Stereo
depth measurements are modeled by extending a
classical method in order to account for scene seg-
mentation. The derived measurement models are then
fused within two different probabilistic approaches,
a simpler Maximum Likelihood (ML) scheme con-
sidering each pixel independent and a more refined
global Maximum-A-Posteriori (MAP-MRF) approach
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estimating the optimal depth distribution on the basis
of a scene prior enforcing piece-wise smoothness.
The proposed global probabilistic framework asso-
ciates different lattice locations to different depth-
value ranges according to the introduced measure-
ment models. The novel measurement and optimiza-
tion model allows to consider only the meaningful
depth range at each location and to sample with
an higher density since the considered regions are
smaller. This permits to improve the estimated depth-
map accuracy and to reduce the computational com-
plexity of the optimization procedure. On the other
side the optimization of the global cost function,
typical of any MAP-MRF model, can not be performed
with standard approaches and for this reason an
extension of the classical Loopy-Belief-Propagation
(LBP) scheme prompted by the need of accounting
for the pixel-dependent depth ranges is proposed in
this paper. Detailed experimental results confirm the
ability of the proposed method to compensate for the
well-known unreliability of ToF measurements near
discontinuities and of stereo measurements in texture-
less areas and to produce very accurate depth maps.

The paper is organized as follows: Section 2
overviews the related literature; Section 3 considers
the problem framed within the more general class of
depth measurements from multiple devices; Section 4
and 5 describe the proposed ToF and stereo measure-
ments model respectively; Section 6 introduces the
adopted ML probabilistic method. Section 7 presents
the more refined MAP-MRF method; Section 8 ex-
plains the variation of LBP needed for the global
optimization; Section 9 presents the experimental val-
idation and Section 10 finally draws the conclusions.
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2 RELATED WORK

The first detailed description of matricial ToF range
cameras can be found in [1] while more recent books
and PhD theses [2], [3], [4], [5] address ToF technology,
calibration and best usage for accurate 3D measure-
ments. A characterization of the performances of ToF
cameras can be found in [6], [7], [8]: the various
error sources that influence range measurements are
analyzed in [6] while a qualitative analysis on how
scene reflectance influences the depth measurements
is given in [7]. The first ToF camera error measure-
ments model accounting for scene properties (i.e.,
depth discontinuity and scene reflectance) is proposed
in [9]. A formal model for ToF measurement errors
is proposed in [10] while a more recent confidence
estimation scheme for ToF data has been presented
in [11]. The issue of flying pixels associated to depth
discontinuities has been discussed in [12].

The idea of combining ToF sensors with standard
cameras has inspired several recent works, a complete
survey can be found in [13]. A first set of works
proposes the combination of a ToF camera with a
single color camera. In the earliest of such attempts
[14] the authors adopt a Markov Random Field (MRF)
approach. A method based on bilateral filtering is
proposed in [15] and extended in [16] where the input
depth map is used in order to build a 3D depth proba-
bility volume (cost volume). The approach of [17] and
[18] explicitly imposes the alignment between range
and color discontinuities to interpolate the depth data
and finally an approach based on geodesic paths from
low resolution samples is proposed in [19].

The setup made by a ToF camera and a stereo
pair attracted considerable attention, because the two
subsystems have complementary characteristics and
both of them can independently produce depth data.
In [20] the depth maps acquired separately by the
ToF and the stereo pair are averaged. In [7] the ToF
depth data is firstly reprojected on the reference image
of the stereo pair, then interpolated and finally used
as initialization for a dynamic programming stereo
vision algorithm. In [9] the final depth-map is recov-
ered from the ToF and the stereo measurements by a
ML local optimization. The main limitations of this
probabilistic method are the resolution of the final
depth-map (equal to the one of the ToF) and the lack
of a global optimization step. The method proposed
in [21] is based on a MAP-MRF Bayesian formulation
inside which a belief propagation algorithm optimizes
a global energy function. A temporal extension of this
method is proposed in [22], and an automatic way to
set the weights of the ToF and stereo measurements
is presented in [23]. Notice that different stereo vision
cost functions can be fitted inside ToF and stereo
vision fusion frameworks, e.g., approaches based on
explicit or implicit segmentation [24] or approaches
exploiting adaptive support weights [23]. A relevant

issue due to the limited resolution of available ToF
sensors is that pixels close to edges can include
measurements coming from surfaces at different dis-
tances (i.e, the mixed pixels problem). An approach
for the separation of the multiple contributions in
mixed pixels has been presented in [25], while the ToF
and stereo fusion approach of [26] accounts for this
issue. The mixed pixels problem is carefully modelled
and handled in the proposed work. Another recent
method [27] uses a variational approach in order to
combine the results of the two devices. In [28] an
extension of the Locally Consistent (LC) approach,
originally developed for stereo vision measurements,
is applied to stereo and ToF data fusion. Other setups
were also considered in the literature, such as four
color cameras in [29] and multiple ToF and color
cameras in [30].

As far as the MAP-MRF solution method, let’s
recall that classical optimization approaches for the
global energy functions are: Loopy Belief Propagation
(LBP) [31], Graph Cuts (GC) [32], Iterated Conditional
Modes (ICM) [33], Tree-Reweighted Message Passing
(TRW) [34]. Comprehensive analysis and a compar-
isons of such algorithms can be found in [35] and
[36]. Since usually these methods are used in problems
where a global energy function is defined for a finite
set of variables (sites) taking discrete values (site-
wise uniform), they can not be directly applied to the
optimization of the energy function obtained in this
work. For this reason Section 8 proposes an extension
of LBP suited to the considered optimization problem.

3 PROBLEM DEFINITION

The computation of an estimate Z of the actual
scene depth-map Z from ToF and stereo data can be
performed within a probabilistic framework as the
solution of a Maximum-A-Posteriori (MAP) problem

Z:arggleza%(P(ZHl,...,IN) (1)

where P(Z|I4,...,Iy) is the posterior probability of
the scene depth-map Z, given the acquired data
I, ..., Iy. From Bayes rule and by assuming indepen-
dent the measurement errors of the various sensors,
Equation (1) can be rewritten as

Z:argIznggP(Il|Z)...P(IN|Z)P(Z) )

where P(I,|Z),n =1,...,N are the likelihoods of the
single device measurements given the scene depth Z
and P(Z) is the scene depth prior probability. The in-
dependence hypothesis, rather common in the litera-
ture [9], [21], [22], [23], seems well grounded since the
two devices exploit completely different measurement
principles and have different error sources. This work
introduces a novel approach for both the construction
of the likelihood of the single device measurements
and for the maximization algorithm. With respect
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to likelihood construction, the proposed approach
extends the formal ToF cameras model described in
[1], [4], [10] in order to remove its limitations near
depth discontinuities. The adoption of such a formal
model for the likelihoods is a significant improvement
over previous works [21], [22], [23]. With respect to
maximization algorithms the adopted maximization
method based on a modified version of Loopy-Belief-
Propagation (LBP) exploits the measurement models
of the quantities to be optimized and is more effi-
cient than the standard LBP adopted in other ap-
proaches [21], [22], [23]. This is due to the use of
a site-dependent label space that greatly reduces the
number of required operations and allows to use an
optimized and denser sampling of the depth values.

Fig. 1: Considered acquisition system made by a ToF
camera T and a stereo vision system S £ {L, R}.

The considered acquisition devices are a ToF camera
T and a stereo vision system S made by a pair of
color cameras L and R. In the setup used for the
experimental results (Fig. 1) the ToF camera T is
placed between the two cameras L and R but the
proposed fusion method is not confined to such a
geometric configuration.

Each of the 3 cameras has its own camera co-
ordinate system (CCS) as shown in Fig. 2. Depth
estimation requires to refer the acquired quantities
to a unique CCS and the trinocular setup has been
calibrated by the method of [9]. ToF cameras acquire
an amplitude image Ar, an intensity image Br and
a depth-map Zr (Fig. 3), all defined on lattice Ap
associated to the ToF CCS. Such data will be denoted
as It = {Ar,Br,Z7}. The data acquired by the
two cameras L and R are instead synchronized pairs
of color images denoted as I;, and Iy, defined on
the lattices A;, and Ag. The data acquired by S are
denoted as Is = {Ir,Ir} and use the CCS of L as
reference.

Fig. 2: CCSs (3D and 2D) associated to the various
sensors of the acquisition system.

Fig. 3: Data acquired by T: Ap (left), By (center) and
Zr (right). (Images Ar and By were processed to increase
printing visibility)

From the above notation, Equation (2) for the con-
sidered setup can be rewritten as

Z = argmax P(Ir|Z)P(Is|2)P(Z) ®)

where P(Ir|Z) and P(Ig|Z) are the likelihood of the
ToF measurements and of the stereo measurements
given the scene depth respectively, and P(Z) is the
scene depth prior probability. The various compo-
nents of Equation (3) are analyzed and described in
the following sections.

If random field Z is assumed pixel-wise indepen-
dent with uniform distribution within the minimum
and the maximum measurable depth at each pixel,
Equation (3) simplifies into

Z = argmax P(Ir|Z)P(Is|Z) (4)

which is a ML formulation of the fusion problem [9].

4 ToF LIKELIHOOD

As reported in [4] and [10], the distribution of the
depth acquisition noise of a ToF pixel p; can be
approximated by a Gaussian with standard deviation

c VB
o, = —————
8 47Tfmod\/§ A

where fpoq is the IR frequency of the signal sent
by the ToF emitters, A is the value of the amplitude
image Ar at pixel p; and Br is the intensity image at
pixel p;. The standard deviation given by Equation (5)
determines the precision (repeatability) of the distance
measurement and it is directly related to the ToF
operational parameters f,,04, A and B. The noise
model of Equation (5), although well-known in the
fields of ToF metrology [10], has never been used in
computer vision applications yet. One of the main
limitations of (5) is that it does not take into account
the finite size of the ToF sensor pixels. In order to
account for this issue we use Equation (5) as a starting
point for the derivation of a more general likelihood
of the ToF depth measurements P(Ir|Z).

Let us consider a finite size pixel p; € Ar which
acquires information relative to a finite size scene
area (as shown in Fig. 4). If the finite scene area is
flat, then the first order Taylor approximation of the
scene area with a fronto-parallel plane is realistic and
the noise model of Equation (5) holds. However, if

Q)



ACCEPTED FOR PUBLICATION ON IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Sensor Scene

Center of Projection

Fig. 4: Formation of a finite size sensor pixel p; € Ar
relative to a finite size scene area.

the scene area falling onto p; corresponds to a depth
discontinuity, its first order Taylor approximation is
not correct, and the noise model of Equation (5) does
not hold. Pixels characterized by this type of depth-
estimation error are often addressed as “mixed pix-
els”. In particular, let us consider the case of a scene
area projected to p, made by two different regions
Rc at depth z¢ (closest region) and Ry at depth zp
(furthest region). The depth measured at the pixel p;
in this case would be:

Zi=oazo+ (1 —a)zp (6)

where « is the percentage of scene area associated to
R¢ and (1—«) that associated to Rp. In order to obtain
a likelihood of the ToF depth measurements z; at p;
it is worth distinguishing between the following two
situations shown in Fig. 5:

1) if Rc and Rp belong to two surfaces at different
depth, the actual depth might be either z¢ or zp,
and not in between them (Fig. 5.a); a situation
we name disconnected discontinuity.

2) if R¢c and Rp belong to the same surface the
actual depth might be either close to z¢ or zp
or somewhere in between them (Fig. 5.b); a
situation we name connected discontinuity.

Fig. 5: Discontinuity types: a) disconnected disconti-
nuity; b) connected discontinuity; c) the discontinuity
between Ro and Rp crosses the area associated to
pi, Dy, i points pi, ph, pt, pb pertain to scene region
Rr while points p}, p§ to scene region Rc.

Since it cannot be known a priori which situation
occurs, the model must account for both scenarios.
To this end it is worth observing that if p; is relative
to a scene area crossed by a discontinuity between R¢
and Rr, some of the points pé. in the 8-neighbourhood
N(p;) of p, measure distance z¢ and some others
distance zr (Fig. 5.c). Hence the likelihood term for

p; should account for the fact that, if p; is across a
discontinuity, its actual value might either be around
the depth measured by p; itself (connected discon-
tinuity) or around the depth measured by some of
its 8-neighbours p§ (connected or disconnected dis-
continuity). The contributions of neighbouring pixels
can be fused by a classical image correlation model
[37], obtaining the following expression of the ToF
likelihood at pixel p;

2
1 zZ—z
P(Ir|Z) x pP— ( z)
op(pi) op(pi)
4 1 z— 2t ?
tet — exp — -
Z&mm <%@J @
8 1 i 2
z— 2
+e? — €Xp — ij
7:25 Up(?j) 01)(]%‘))
with

) = i3 AD)

where z; = z(pé-), and o; and o;; are the standard
deviations of the depth measurements for the points
pi and p’ respectively, obtained from Equation (5).

Before moving forward, let us analyse what Equa-
tion (7) means and why the proposed model for
the ToF likelihood is adequate. In case of no depth
discontinuity, the various Gaussian contributions of
Equation (7) have similar mean, therefore the ToF
likelihood becomes very similar to a Gaussian with
variance given by Equation (5). Hence this model,
although more general, reduces to the one of Equation
(5) when the assumptions for (5) hold. In presence
of a depth discontinuity, Equation (7) produces a
mixture-of-Gaussians model with Gaussians centered
at z¢, zrp and at the measured values for the pixels
crossing the discontinuity. This is likely to assign
high probability to depth values around zc and zp
(corresponding to the disconnected discontinuity) and
around the measured depth z; (corresponding to the
connected discontinuity case), in agreement with the
observations about the two cases of Fig. 5.

Since all terms of (7) are Gaussians, the Chebychev
theorem associates nice properties based on the useful
interval concept to ToF likelihood (7). It is a fact that,
given certain depth measurements for pixel p; and
its neighbourhood, the actual depth value z* is likely
not to be very different from at least one of them.
This concept can be formalized by noting that like-
lihood (7) is a mixture of Gaussians. For a Gaussian
distribution the concept of useful interval ensures that
the actual value of the measured quantity belongs to
interval [p — 30, 1 + 30| with probability 0.997 where
i is the mean and o is the standard deviation of
the Gaussian distribution. In the case of a mixture
of Gaussians the useful interval can be defined as
[Nmzn _30min7 Hmax +3Jmax]/ where Hmin and Omin are
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the mean and the standard deviation of the Gaussian
in the mixture with minimum mean value, while ;4.
and 0,,,, are the mean and the standard deviation
of the Gaussian in the mixture with maximum mean
value. In the depth measurements case, fiymin and opin
can be named pc and o¢ (where C stays for “close”)
and piae and o4, can be named pp and op (Where
F stays for “far”). Since all depth values outside the
useful interval for pixel p; can simply be ignored, this
concept allows to prevent useless computations in the
fusion algorithm as pictorially shown in Fig. 6 and
explained in the following sections. Furthermore the
depth values inside the useful interval can be sampled
at high resolution. From a high-level point of view
it is possible to say that the ToF likelihood model
(7) accounts not only for classical ToF measurement
error distribution theory but also for the matricial
nature of ToF cameras sensors. The only issue not
accounted by this model is the inter-reflection (multi-
path) error of ToF cameras [38], [39]. However this
issue is very complex to model and typically leads to
artifacts around corners that can be removed in the
global optimization step. Indeed the proposed model
leads to accurate depth estimates as the experiments
of Section 9 show.

Total '\r\ter\/a\ §100 %) \
\ \ "

7%)
Usefu\\‘mtew\s\ (e-8

Fig. 6: The concept of useful interval allows for a
reduction of the number of operations, as it will be

shown in Section 9.

5 STEREO LIKELIHOOD

The literature offers a number of different approaches
for modeling the likelihoods of the depth estimates
z; obtained by a calibrated and rectified stereo vision
system [40], [41]. Let us denote as p- € A, pf € Ar a
pair of conjugate points (i.e., they refer to a unique 3D
point P; in the scene) with image coordinates pF =
[uf, vF]T and pft = [uf, vF]T. The likelihood of stereo
data I given depth distribution Z; can be obtained by
considering multiple hypothesis z; ,,n = 1,...,N for
depth z; and computing a likelihood value for each
hypotheses. By taking advantage of classical stereo
schemes the likelihood distribution P(Ig|Z(P;,,)) for
hypotheses z;,,n = 1,...,N can be practically com-
puted as follows:

1) for each depth hypothesis z; ,,n =1,..., N com-
pute the 3D coordinates of the corresponding 3D
point F; ,,

2) project P; , into the 2D points piL’n € Ap,pl, €
Ar with image coordinates piLm = [uan’ an}T
and an = [Uf‘n, vE 1T respectively.

3) consider a window Wan centered around pf:n
and a window W/, centered around pf,

4) evaluate the similarity (hence the likelihood)
between I (W}) and Ir(W})

])1{:3 Pﬁz Pﬁl Pﬁ Pﬁé Pﬁs /E
| K| e
N( 20 == R
2
g
" Matches
a) b)

Fig. 7: Stereo likelihood computation: a) The 3D points
sampled from the useful interval are re-projected
onto the two stereo images; b) the stereo likelihood
is computed by matching the windows centered on
conjugate pairs.

The procedure above is pictorially shown in Fig. 7.
The actual computation of the similarity between
I;(WE) and Ir(WF) can be obtained by the clas-
sical method of [40] (for a comprehensive presen-
tation of cost matching and aggregation procedures
refer to [42]). Recent advancements in stereo cost
aggregation procedures show that image segmenta-
tion clues can improve the results [43]. In light of
this we improved the cost function by accounting
also for segmentation clues. Differently than [40] for
the matching cost computation we adopt Truncated
Absolute Difference (TAD) as in [43] instead of the
Birchfield-Tomasi method [44]. Let us call S;, and Sg
the segmentations of images I;, and Ir obtained by a
suitable image segmentation method such as [45] and
call W}, and W the rectangular windows of size
Ws = (2Hw +1) x (2Wy +1), centered at p-,, and pf?,
respectively. The likelihood of stereo measurements
P(Is|Z(P;y)) can be computed as

C(pfnxp?n)
expfi’oz .
PUS\Z(P) = — T ()
Zk:l exp — z,gk; ik
T

where C(pf,,pf,) (and similarly C(pF,,pl,)) is de-
fined as

L R _ 1
C(piv”’piv”) - Ws* ZUG[—WW7WW] Zve[_HW7HW]
{ w(pzl:'rw [U’ZLn —u, ’UiI:n - U]T)*
w(pﬁ'rm [uﬁn - u, Uﬁn - U]T)*
min (I2.(pf,) © Ir(Pf%), Th) }

)
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where 7T}, is the TAD threshold parameter, © is
an operator defined as the geometric mean of the
three intra-channel difference between I and I and
w(p,q), with p = [uy, vy, q = [ug, vy]7 is the aggre-
gation weight of [43], namely

1
w(p,q) = {
I(p)© I(q)

where S is the segmented image to which p and gq
belong (either S; or Sg) and I is the acquired color
image (either I, or IRg).

if S(p) == S(q)
(10

otherwise

6 STRUCTURE OF THE DEPTH DOMAIN AND
THE ML FRAMEWORK

There are two different natural choices for the lattice
Az of the output depth-map and of the scene depth
prior probability P(Z), namely Az = Ag (e.g., [7], [15],
[20], [21], [22]) or Az = Ar (e.g., [9], [46]).

Choice Az = Ag allows to adopt standard stereo
likelihood expressions [40], [41] while the ToF like-
lihood can only be expressed in heuristic ways [21],
[22]. The other advantage is that the output resolution
is the one of the stereo pair which is typically the
highest. Another issue is the very high computational
complexity (approximations can be used to reduce it
[21], [22] but with an impact on the accuracy).

Choice Az = Ar allows to exploit the previ-
ously introduced formal model for both the ToF and
the stereo likelihoods, leading to a computationally
lighter framework but the output resolution is the one
of the ToF sensor which is typically the lowest.

In order to exploit the above presented formal
models for ToF and stereo likelihoods and to obtain
an high resolution output we adopt as Az a version
of Ar interpolated by L times denoted as AL, giving
an estimated depth-map Z with resolution cardinality
Ll|Ar|| ~ ||ALl| (eg., L =2,4,6).

The choice Az = A% requires to up-sample the ToF
likelihood P(I7|Z) from the lattice A7 to A%. Notice
that interpolation of image data would create flying
pixels in edge regions that would strongly affect the
computation of the ToF data term, for this reason the
interpolation is performed on the probability densities
and not on the depth or image data. Since the meaning
of spatial-interpolation of probability densities is not
the same of spatial-interpolation of images or depth-
maps, we preferred to adopt a “bilinear interpolation”
model, which naturally relates to standard correlation
models for 2D random fields. The bilinear interpola-
tion of the likelihood probability from Az to AL gives
an up-sampled likelihood probability distribution of
the measurements performed by the ToF camera de-
noted as PL(Ir|Z). For simplicity, the superscript L
will be omitted in the sequel.

Any specific realization Z of random field Z is
characterized by N, possible values for each pixel:

Z(pi) = z'".,n; € [1,..,N;]. If depth scene prior
P(Z) is considered both uniform and pixel by pixel
independent, and the likelihood probabilities of the
ToF P(Ir|Z) and of the stereo P(Ig|Z) are also pixel
by pixel independent, by assuming independent the
measurements of the two devices, the posterior prob-
ability distribution can be expressed as:

P(Z(pi)=z]"|Is,I7)=P(Is|Z(p:) == )P(Ir| Z(ps) :z(;;il)

The use of (11) as the argument of the optimization of
Equation (2) corresponds to an ML framework similar
to [9] with the difference that in [9] Az = Ar while
in this work Az = A%. The ToF and stereo likelihoods
of this work are also different from those of [9].

7 MAP-MRF FRAMEWORK

If the spatial relationships of the scene-pixels depths
are taken into account, Z can be assumed to be a
Markov Random Field (MRF) and P(Z = Z) can
be expressed as P(Z(p;) = 2| Z(p;) = z]n’) where
p; € N(p;), with N(p;) the neighborhood of p;,
pi € Az n; € [1, ,Nz] and n; € [1, ...,Nj].

Since Z is a MRF, the posterior probability distri-
bution maintains the Markovian property and can be
expressed as

P(Z(pi) = 2"|Is,I1) =
P(Is|Z(pi) = 2" )P(IT| Z(pi) = " )*
{Z2(pj) =275 :p; €N(pi)}) (12)

where P(Is|Z(p;) = 2" )P(Ir|Z(p;) = z;'") is the data
term denoted as P{4%*%) and P(Z(p;) = 2" |[{Z(p;) =

23,5 :p; € N(pi)}) is the smoothness term denoted as
P(smooth).

*P(Z(p;) = 2z

The data term ensures that the probability of the
depth distribution given the measurements reflects
the measurements themselves, and the smoothness
term imposes the piecewise-smoothness of the esti-
mated scene surface. For the smoothness term we
adopted the classical truncated quadratic model [47].
The use of (12) as the argument of optimization (2)
corresponds to a MAP-MRF framework. In order to
summarize the proposed probabilistic framework, Fig.
8 shows a flowchart of the method showing both the
ML and the MAP-MRF approaches.

8 LOOPY-BELIEF-PROPAGATION
OPTIMIZATION

Classical optimization methods for global energy
functions obtained from a MAP-MRF Bayesian ap-
proach are: Loopy Belief Propagation (LBP) [31],
Graph Cuts (GC) [32], Iterated Conditional Modes
(ICM) [33] and Tree-Reweighted Message Passing
(TRW) [34]. See [35] for a comprehensive analysis and
a comparison of such algorithms. These methods are
usually adopted in problems where a global energy
function is defined for a finite set of variables (sites)
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v

The ToF likelihood is computed
for each point of A,

v

The useful interval for each pixel ToF-likelihood
is sampled as described in Section 4

v

Each sampled point is projected to the left and right
stereo images and the stereo likelihood is computed

v

The stereo images are resampled (the points projections may
not have integer coordinates) and the ToF likelihood is computed

v

The values of the ToF and of the stereo likelihoods are multiplied
point-wise to obtain the joint likelihood of the measurements

The scene depth prior (Sec. 7)
is computed for each sample
and for its neighbourhood

1

The energy function to be
optimized is computed by
multiplying together the ToF
and stereo likelihoods
with the scene prior

The energy function to be
optimized is computed by
multiplying together the ToF
and stereo likelihoods

[ ML solution ] [ MAP-MRF solution ]

Fig. 8: Flowchart of the proposed ML and MAP-MRF
fusion frameworks.

with discrete values. The proposed energy function
on the contrary is computed on a different number
of samples corresponding to potentially different dis-
tances at each pixel and at each of its neighbors.
This characteristic makes the considered optimization
problem non-standard.

>
>

*
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Fig. 9: a) In all the previous approaches each pixel
of Az is associated to the same set of possible depth
values; b) In the proposed approach each pixel of Az
is associated to its own set of depth values different
from the ones of the other pixels.

LBP is particularly suited to the considered sit-
uation since the message-passing structure of LBP
does not impose any range-sampling condition on
the messages exchanged between adjacent nodes. This
fact has been exploited for other computer vision

tasks (e.g., an application to stereo vision has been
proposed in [48}3), but has never been exploited for
the considered ToF and stereo data fusion problem.
Moreover, in [48] the range values are just a subset
of a finite set of range values (e.g., a set of integer
disparity values in [0,255]), while in our case the
set of range values for each pixel does not have the
same limitation. Not only the optimization problem
of Equation (12) can be solved by LBP, but also
the §fectiveness of the messages exchanged across
nei%hboring sites can be improved by considering at
each site only the meaningful range portion associated
to the useful interval. In particular there are not
exchanged messages associated to values not close to
any measurement (in terms of range), and within a
given probability the true depth value is guaranteed
to belong to the range considered for message pass-
ing. Let us briefly recall that LBP optimizes a global
energy function (e.g., Equation (12)) by marginalizing
the posterior probabilities at each pixel on Az. The
marginalization is iteratively Eerformed by message
(belief) passing between neighbor points [31], [49]. As
shown in Fig. 10, the range values or depth samples
associated to pixel p; € Az are {z",n; € [1,N;]} and
generally differ from the range values associated to
p;j € N(p;) denoted as {z]7,n; € [1, N;]}. The message
that p; € N(p;) sends to points p, € Az for distance
21" at the (t + 1) iteration, similarly to the classical

(A

LBP messages, is defined as:

N
m;‘rim (2%) = Z P(data)(z;lj)P(smooth)(zZ”7z;.”)
nj=1

t n;
Mp;—p; (ij)
LpieN(p;)—{pi}

(13)

It is worth noting how from the first sum of the
RHS of (13) each depth sample z;" receives exactly
the same number of contributions from each neigh-
boring pixel (as shown in Fig. 10). Namely each
value 2], n; € [1, N;] receives N, contributions from
the N; range values z;’ associated to p;. This fact
is fundamental for the exploitability of LBP in the
solution of the considered optimization problem. All
messages are initialized at 1 before the first iteration:
mgj_wi(zfi) = 1,Vp; € Az, Vp; € Ni(pi),Vn; €
[1,...,V;] and the adopted message updating rule is
synchronous. Let us recall that the goal of LBP is the
marginalization of the posterior probability P;(z]"") of
depth samples z},...,z;"" at each site p; € Az. The
maximization becomes a winner-takes-all algorithm
[49] on the marginalized posterior probability P, (")
and the final expression for the marginal posterior
probability P;(z") is:

I myo G (4)

Jpi €N (pi)

?

| o
P(&) = PO (3)

where mp°_,, (/') is the value of the message at the

last considered iteration of LBP.

A formal proof of the convergence and of the
effectiveness of the modified LBP algorithm is not
given as in the standard LBP case. Nevertheless the
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Fig. 10: Example of the structure of the messages
exchanged between p; € Az and p; € N(p;) with
N; = 3 range (depth) samples for p; and V; = 2
for p;. The messages relative to z; are in purple and
the messages relative to 27 in green. Notice how each
range value z" receives exactly N; = 2 messages.

experimental results clearly support the suitability of
our modified LBP for maximizing posterior probabil-
ity (12). The intuition is that only meaningful depth
values affect message passing, making the messaging
strategy more effective and avoiding sending noisy
messages across neighboring sites. The possibility of
considering different labels at different sites is a great
advantage because it allows to narrow the labeling
problems focus, with consequent computation reduc-
tion and accuracy increase (Fig. 11).

Proposed
4 I non-uniform
range

Uniform range

Fig. 11: Pictorial representation of the difference be-
tween classical labeling problems characterized by
uniform labels at different sites and the considered
labeling problem characterized by different labels at
different sites.

Finally let us remark how the considered method
exploits the formal ToF measurements model in order
to decide which portion of the range-space is worth
to consider. The ToF likelihood, the stereo likelihood
and the depth prior are computed only on a sampled
version of such a range-space portion. The labeling
problem defined in this way focuses only on the
relevant part of the range space and it can be solved
both efficiently and accurately by the described opti-
mization technique.

In order to fully understand the benefit of the
proposed algorithm, let us analyze its computational

complexity. The computational complexity of LBP is
dominated by the computation of the messages to
be passed (Equation (13)), which are performed at
each site and for each iteration of the LBP algo-
rithm. In particular, without treating the sites at the
lattice border as a special case, at each site p; in
the lattice and for each range value z!" there is a
message coming from each range value z;” of each
site p; in the neighborhood of p;. Assuming that the
considered neighborhood contains |\ sites and that
the previous iteration messages as well as the data
and the smoothness probabilities are pre-computed, a
message computation is made by |[N| multiplications
and |AV + 1] memory accesses. Therefore the total
number of multiplications for a single iteration of LBP
(again with an approximation for the border pixels) is

SN YT NV (15)

pi€Az p; EN(pi)
which by assuming N; ~ N; can be approximated as
NPN?[AZ]| (16)

where N is the average number of range values in
the lattice and |Az| is the number of pixels in the
lattice. Note that this is not an approximation if all
the sites have the same number of range values and
it is a very good approximation for scene areas charac-
terized by similar ranges, i.e., areas not in proximity
of depth discontinuities. Empirically such sites con-
stitute the great majority of the sites in Az. Similarly,
the number of memory accesses can be approximated
as [N + 1|2N2|Az|. Therefore in L iterations of LBP
the dominant term of multiplications is LN |[2N?|Az|
and the dominant term of memory accesses is L|N +
1|2N?|Az|. Notice that in the implementation used
for experimental results memory has been entirely
pre-allocated. In order to improve the performances,
it is possible to pre-compute the number of range
values for each site and consequently pre-allocate the
memory necessary to account for the maximum of
such range values.

9 EXPERIMENTAL RESULTS

In order to asses the quality of the proposed fusion
frameworks for data acquired by a ToF camera and
a stereo pair, we considered a setup made by two
standard BASLER scA1000™RGB cameras {L, R} and
a MESA SR4000 ToF camera {T'}. The color cameras
acquire two 1032 x 778 RGB images {I, Ir} forming a
stereo pair with a baseline of 170[mm]. The SR4000 ac-
quires a 16-bit depth image Dy, with values in [0, 5m)],
a 16-bit amplitude image A, and a confidence map
Cr with integer values in [0,8]. Data {Ap, Dy,Cr}
have resolution 176 x 144. The ToF camera is posi-
tioned in between L and R as shown in Fig. 1 and the
three cameras are hardware synchronized.



ACCEPTED FOR PUBLICATION ON IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Fig. 12: Sample scenes used for the experimental results (each row correspond to a scene). First column I,
(resolution [1032 x 778]), second Ip (resolution [1032 x 778]), third Ar (resolution [176 x 144]), fourth Dy
(resolution [176 x 144]) and fifth the ground truth depth-map Z (resolution [1032 x 778]). Only the central
portion of the acquired scene is considered for the analysis of the results.

The fusion procedures of Fig. 8 take as input the
two high resolution color images I;, and Ip of the
two cameras as well as the low resolution depth-map
Dr and the amplitude image Ar acquired by the ToF
camera T. The output of both fusion algorithms is a
depth-map Z with resolution [704 x 576] (resolution
can go up to [1056 x 864] or down to [352 x 288])
from the point of view of the ToF camera (defined on
the lattice Ay = A%, with L = 4), characterized also
by high distance measurement accuracy. In order to
validate the accuracy of the two fusion algorithms, we
compared the quality of the estimated depth-maps Z
against a ground truth acquired by a space-time stereo
vision system [50], [51] for different scenes (shown
in Fig. 12). A set of 600 frames with 600 different
projected patterns are adopted for each scene. The
ground truth depth-maps are estimated by integrating
all the 600 images with the 600 patterns. A sub-pixel
refinement and a left-right check were also applied. The
accuracy of the depth-maps obtained by space-time
stereo is of about 1 — 2[mm)].

9.1 Evaluation of the ML fusion scheme

One of the major contributions of the proposed fu-
sion method is the likelihood model adopted for
ToF cameras measurements, which accounts for the
matricial nature of ToF cameras, for depth disconti-
nuities and for the near IR reflectivity of the scene. Its
effectiveness can be well appreciated by comparing
some examples of ToF and stereo likelihoods and
of their multiplication (i.e., the joint likelihood or
data term) clearly showing that the ML approach can
both improve the accuracy of depth measurements
far from depth discontinuities and correct erroneous
measurements of the ToF camera near depth discon-
tinuities. Let us firstly consider (Fig. 13.a) the case
of a pixel p; far from depth discontinuities from
the first scene of Fig. 12. It is worth noting how
the maximum of the ToF likelihood (second row)
corresponds to depth 1564[mm|, the maximum of the
stereo likelihood (third row) to depth 1578[mm| and
the maximum of the joint likelihood (i.e., the output
of the ML approach, shown in the last row) to depth
1580.2[mm] which is also the ground truth, i.e., better
than each of the single devices.

Fig. 13.b shows the case of a pixel p; near depth
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Fig. 13: Likelihood functions: Image and depth data with the considered point of the scene highlighted (first
row), ToF likelihood (second row), stereo likelihood (third row) and joint likelihood (fourth row) relative to:
a) a point far from scene distance discontinuities; b) a point near scene distance discontinuities; c) a point in

a texture-less area.

discontinuities from the same scene: in this case, the
ground truth depth is 1576[mm]. The point is near
a distance discontinuity characterized by a surface
at 1584[mm| (where the point actually lies) and a
surface at 2079[mm/|. The depth measured by the ToF
is 1789[mm)], resulting in this case rather inaccurate
with an error of 213[mm] due to the effects explained
in Section 4. The texture around the considered pixel
makes accurate the stereo measurement, with the
likelihood maximum at 1576[mm)]. The accuracy of the
stereo likelihood is passed to the joint likelihood with
maximum at 1576[mm] which is the output of the ML
method, clearly showing how the fusion algorithm
can improve the quality of ToF measurements.

The example shown in the first row of Fig. 13.c
shows how the fusion algorithm can also improve
the stereo measurement accuracy. Fig. 13.c refers to
a point characterized by lack of texture in the color
images I;, and Ig. In this situation depth measure-
ments performed by stereo methods are unreliable, as
indicated by the uniform stereo likelihood shown in
the third row of Fig. 13.c. ToF measurements are not
affected by the lack of texture and the ToF likelihood
has a maximum at depth 1410.2[mm], rather close
to the actual depth of 1411[mm]. Since the stereo
likelihood does not have any peak, the ToF likelihood
shapes out the joint likelihood, giving it a maximum
at depth 1410.2[mm]. Fig. 13 shows that the ML
algorithm gives better results than the ones obtained
by the stereo vision algorithm alone. Furthermore the
ToF model (7) together with the stereo model in the

ML approach work robustly with respect to scene
depth discontinuities and textured and textureless
surfaces. Fig. 14 shows the depth error obtained by
the ML approach for the first scene of Fig. 12. The

Error-map [m]

Fig. 14: Depth error-map (expressed in [m]) of the ML
approach for the first scene of Fig. 12.

error peaks of Fig. 14 correspond to the texture-less
slanted surface of the table where stereo measure-
ments become unreliable because of the lack of texture
and ToF measurements become unreliable because
of surface declivity, in agreement with the fact that
the ML results are obtained just by picking at each
pixel the depth which maximizes the joint likelihood
at that pixel without any global optimization. It is
also worth noting that the error peaks are about an
order of magnitude greater than the average errors.
The unreliability of ToF measures in case of surface
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declivity can only be appreciated if one uses real
ToF measurements: if in our experiments we had
used non-experimental ToF data (e.g., a downsampled
version of the ground-truth corrupted by additive
noise) such a characteristic of real ToF measurements
would not have been noticed at all.

9.2 Evaluation of the MAP fusion scheme

The proposed MAP framework based on the global
optimization of (3) by LBP allows to obtain better per-
formances with respect to the ML approach, as shown
by the results in Table 1 reporting the average values
of the ToF accuracy, of the stereo accuracy, of the ML
accuracy and finally of the proposed MAP approach
for all the 5 scenes of Fig. 12. In particular the first row
of Table 1 shows that for the first scene of Fig. 12 the
accuracy of the ML fusion approach is always better
than the one of ToF and stereo measurements alone
with an average error reduction of 13% with respect
to the ToF measurements. ToF data is on the average
more accurate than stereo data, nevertheless exploit-
ing the proposed approach the information produced
by the stereo system can be efficiently used to improve
the ToF data accuracy even though the stereo vision
system itself is less accurate. Note how the accuracy
of our stereo measurements is not comparable with
the accuracy of stand-alone stereo vision algorithms,
because it is greatly improved by the useful interval
supplied by ToF measurements. Table 1 also indicates
that the MAP approach is more accurate than the
ML one on all the considered scenes with an error
reduction of 9% with respect to the ML results and a
reduction of about the 20% with respect to the average
ToF measurement errors. This confirms that the extra
complexity introduced by the MAP model with re-
spect to the ML scheme leads to better performances.
A visual comparison of the two approaches is shown
in Fig. 15 that shows a detail of the depth map of
the third scene estimated by the ML and the MAP
approaches. This example shows the distributed local
quality improvement due to the application of the
LBP which is sometimes hard to capture in terms of
average error value improvement because it concerns
small regions.

Fig. 15: Detail of the depth-map estimated by the ML
(left) and the MAP (right) approaches.

Scene | ToF | Stereo | ML | MAP
1 22 30 20 17
2 24 35 20 18
3 27 30 25 23
4 28 29 22 20
5 27 31 25 24

TABLE 1: Accuracy (in [mm]) of depth information
acquired by ToF, stereo, ML fusion and MAP fu-
sion. Stereo accuracy benefits from the useful interval
concept. The table refers to output depth-maps with
resolution [352 x 288].

Fig. 16 shows the depth-maps estimated by the
proposed approaches (ML and MAP) for the five
scenes of Fig. 12. The resolution of the considered
depth-map is [704 x 576], i.e., 16x the resolution of the
depth-maps acquired by the SR4000 and the estimated
depth-maps are compensated for camera distortion.
Note that it is possible to perform the undistortion
artifacts-free directly in the three-dimensional space.
Fig. 16 shows that the MAP-MRF depth estimates
are much less noisy and more accurate than the
ML estimates. This becomes particularly clear when
comparing ML and MAP depths of the areas denoted
by the arrows. In particular edge regions are more
accurately represented. The accuracy of the proposed
method is always comparable or better than the best
one between ToF and stereo accuracies and the depth
resolution is less than 1[mm] (it can be tuned by
suitable sampling of range inside the useful interval).

Table 2 compares the results of the proposed work
with some other approaches, i.e.,, the methods of
[21], [15], [9] and [28]. These methods have been
implemented and tested on the scenes of Fig. 12. Table
2 shows a quantitative comparison of their depth
estimates and for comparison purposes it also reports
the performances of the stereo vision algorithm of
[52]. Table 3 shows the results of the same experiment,
but only considering the error in areas close to depth
discontinuities'. It is clear that the proposed approach
outperforms the methods of [21], [15], [9] and [28]. In
particular the proposed MAP approach has the best
performances on all the considered scenes, except that
[28] attains similar performances on Scene 3 and [9]
on Scene 5. The proposed method behaves very well
also near depth discontinuities, and only [28] slightly
outperforms it in Scene 1 and has similar results in
Scene 2. The ML scheme has also good performances,
similar to the ones of [9] which is also based on a ML
optimization scheme.

Qualitative comparisons are also possible. The pro-

1. Depth discontinuities are defined as the set of pixels in
a 9 x 9 neighborhood of pixels for which the Laplacian
of Gaussian operator applied to the ground-truth depth-map
provides an output discontinuity value greater than 50[mm)|.
The computed discontinuity maps are available at the URL
http://lttm.dei.unipd.it/paper_data/fusion/.
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Fig. 16: ML (fist row) and MAP (second row) estimates of the depth-maps of the five scenes of Fig. 12. The

arrows point to some of the most relevant artifacts of ML estimation which are removed by the MAP-MRF
approach (the depth maps are available at the URL http://lttm.dei.unipd.it/paper_data/fusion/

in order to better appreciate the details).

Scene | [9] | [15] | [28] | [52] | [21] | ML | MAP
1 21 | 26 22 | 112 | 25 | 20 17
2 20 | 20 21 | 141 | 24 | 20 18
3 25 | 33 23 64 37 | 25 23
4 22 | 38 24 | 118 | 29 | 22 20
5 24 | 38 27 | 115 | 33 | 25 24

TABLE 2: Comparison of the depth estimation accu-
racy in [mm] obtained with various approaches. All
the compared methods exploit both stereo and ToF
measures with the exception of [52] that is a pure
stereo vision method.

Scene | [9] | [15] | [28] | [52] | [21] | ML | MAP
1 66 91 61 297 | 75 67 63
2 68 | 96 64 | 332 | 78 69 64
3 64 87 66 198 88 65 56
4 65 | 98 67 | 266 | 79 66 56
5 64 97 70 | 275 | 79 68 61

TABLE 3: Comparison of the depth estimation accu-
racy in [mm] obtained with various approaches in
areas close to depth discontinuities' .

posed method provides an high resolution depth-map
with respect to [9] which instead gives as output a
depth map only at the low resolution of the ToF cam-
era. Moreover, the global optimization step provides
more robust scene depth estimates with respect to the
methods of [9], [15], [28].

With respect to [21], that also exploits a MAP op-
timization the porposed approach has an error about
30% lower, due to the more refined ToF likelihood
model which in our case is formally derived from
the ToF camera error model and to the adoption
of the useful interval, a provision which allows to
reduce the computational complexity and to improve
reconstruction results.

For what concerns the computational complexity

of LBP, as shown in Section 8, the complexity of
the message-passing operation is dominated by a
term proportional to N?, where N is the average
number of range values computed across all the sites.
the useful interval on the considered scenes reduces
the average range down to the 7% of the range of
the full scene. The computational complexity is also
proportional to the number of iterations L of LBP
before convergence. The proposed method converges
quite quickly to the optimal value, typically in just a
few iterations. For example Fig. 17 reports the MAP
estimation error of our approach and of [21] as a
function of LBP iterations for all the five scenes. We
can assume that convergence is reached when the
depth-error reduction at the current iteration (with
respect to the depth ground-truth computed with
space-time stereo) is less than a tenth of the depth-
error reduction at the previous iteration. With this
definition, the proposed LBP algorithm converges on
average in 8 iterations on the considered scenes, while
standard approaches, such as [21] converges in 7
iterations. Notice also that our approach allows to
obtain a faster error decrease in the first iterations.
Therefore in such scenes it is possible to notice that
the concept of useful interval and its exploitation in
LBP reduces the computational complexity dominat-
ing term more than 100x (notice that the number of
iterations is similar but the amount of computation
in each iteration is much smaller due to the narrower
ranges as previously discussed), with respect to the
usage of the same lattice, same neighborhood and
same range-sampling step in a standard approach. It
is worth noting that this is only an approximation
of the computational complexity of LBP and that
with some knowledge of the minimum and maxi-
mum scene depth it is possible to speed up the stan-
dard LBP approach. The source-code of the proposed
LBP optimization algorithm is available at the URL
http://lttm.dei.unipd.it/paper_data/fusion/.
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Depth estimation error as function of LBP iterations Depth estimation error as a function of LBP iterations from [21]
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Fig. 17: MAP estimation error vs. LBP iterations for
the 5 considered scenes: a) Our approach; b) Zhu et
Al [21].

10 CONCLUSIONS

This paper proposes a new method for the fusion
of data acquired by a ToF camera and a stereo pair
in order to obtain high quality depth estimates. The
elements of novelty of the proposed approach are
several. First of all the paper introduces a novel model
for ToF depth measurements which provides an accu-
rate description of the measurement process in pres-
ence of depth discontinuities and extends standard
stereo measurements model to account for advanced
segmentation clues. The proposed ToF measurements
model overcomes some fundamental limitations of
previous models treating ToF cameras only in a pixel-
wise fashion.

Depth data acquired by a ToF camera and a stereo
system are combined together using both a ML ap-
proach and a global cost function derived from our
premises within a MAP-MRF approach. The proposed
MAP-MRF framework is characterized by different
depth range values at each site of the lattice of the
estimated depth-map. The presence of site-dependent
ranges requires an extension of the classical LBP opti-
mization which is another element of novelty of this
paper applicable to a variety of different computer
vision and 3D reconstruction problems.

The performances of the two proposed methods are
assessed by experimental validation against a ground
truth obtained by space-time stereo. Evaluation has
been purposely performed on real data since artifi-
cially generated data cannot account for the complex
interactions typical of ToF measurement.

The results clearly show the effectiveness of the pro-
posed ToF depth measurements model in presence of
depth discontinuities without any performance sacri-
fice with other depth configurations and the effective-
ness of the proposed ML and MAP-MRF frameworks
for high quality scene depth estimates

Further research will address the improvement of
the measurement models for both stereo and ToF
sensors. In particular more accurate models of typical
stereo vision artifacts will be employed, as well as ToF
models that account for artifacts introduced by multi-
path. The LBP scheme will be improved by consider-

ing approaches for continuous distributions modeled
by Gaussian mixture models, and possibly the fusion
framework will be applied to Conditional Random
Fields prior models. We also envision extensions to
dynamic scenes by including constraints in the time
domain to the proposed MAP scheme.
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