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Abstract: We present an approach for segmentation and semantic labeling of RGBD data ex-
ploiting together geometrical cues and deep learning techniques. An initial over-segmentation is
performed using spectral clustering and a set of NURBS surfaces is fitted on the extracted seg-
ments. Then a Convolutional Neural Network (CNN) receives in input color and geometry data
together with surface fitting parameters. The network is made of nine convolutional stages fol-
lowed by a softmax classifier and produces a vector of descriptors for each sample. In the next step
an iterative merging algorithm recombines the output of the over-segmentation into larger regions
matching the various elements of the scene. The couples of adjacent segments with higher simi-
larity according to the CNN features are candidate to be merged and the surface fitting accuracy
is used to detect which couples of segments belong to the same surface. Finally, a set of labeled
segments is obtained by combining the segmentation output with the descriptors from the CNN.
Experimental results show how the proposed approach outperforms state-of-the-art methods and
provides an accurate segmentation and labeling.

1. Introduction

Recent achievements in the computer vision field allowed to obtain a relevant improvement in
algorithms dealing with the semantic segmentation task. In particular we focus on two key ad-
vancements. The first is the development of more powerful machine learning algorithms, specially
deep learning techniques, that allowed to better understand the semantic content of the images.
The second is the introduction of consumer depth sensors that allowed to easily acquire the 3D
geometry of the scene, a very useful source of information overcoming several limitations and
ambiguities of color information.

Clustering techniques, e.g., normalized cuts spectral clustering [1], are an effective approach
for segmentation well-suited for the extension to the joint segmentation of color and geometry
information [2]. However, the normalized cuts algorithm has a bias towards producing regions of
similar sizes and for this reason it is challenging to properly separate all the objects avoiding at the
same time to over-segment the scene.

The problem can be solved by exploiting an over-segmentation performed with normalized cuts
followed by an iterative region merging approach scheme. This work follows this rationale and
uses together two different cues in order to decide which segments must be merged. The first is
a segment similarity measure obtained from the descriptors computed by a Convolutional Neural
Network (CNN). The other is obtained, for a given couple of segments, by fitting a Non-Uniform
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Rational B-Spline (NURBS) on each segment taken separately and on their union. The fitting
accuracies are then compared and the two segments are merged whenever their union results in
an increased fitting accuracy [3]. Notice how this idea allows to detect if the two segments are
part of the same scene surface (and thus are candidate to be merged) and to properly handle also
non-planar object and surfaces.

The approach was firstly proposed in [4], this extended journal version exploits a more advanced
classification algorithm and presents a combined segmentation and semantic labeling approach. In
particular, with respect to the conference work a deeper Convolutional Neural Network architecture
has been employed and surface curvatures and fitting error have also been used inside the CNN
(up to our knowledge, this is the first time this kind of data is used in a deep learning framework).
Furthermore orientation data have been replaced by HHA descriptors [5] (disparity, height and
orientation angle) and the experimental evaluation now addresses also the semantic labeling task.

2. Related Work

Segmentation of RGBD data has been the subject of many research works (a recent review is
contained in [6]). Clustering techniques are commonly used for image segmentation and they
have been exploited for the combined segmentation of color and geometry by using multi-channel
feature vectors [7, 2]. The method of [8] performs multiple clusterings with K-means and combines
them together.

Region splitting and growing methods are another commonly used approach. The approach
of [9] starts from an over-segmentation and combines segments corresponding to the same planar
region by exploiting a method based on Monte Carlo Markov Chain and Rao Blackwellization.
The method of [10] exploits region splitting and iteratively refines the segmentation by recursively
splitting regions that do not correspond to a single surface. The work of [3] uses the same criteria
in a bottom-up approach starting from an over-segmentation of the scene. Gupta et al. [11] use
a hierarchical segmentation starting from edge detection information. The method of [12] starts
with an over-segmentation computed with watersheds and then exploits a hierarchical approach.
Hasnat et al. [13, 14] start from a joint clustering method on the color, geometry and orientation
data and then apply a region merging algorithm searching for planar regions. Finally, [15] uses
dynamic programming to extract planar surfaces.

A closely related problem is semantic segmentation, i.e., joint segmentation and labeling of
the segments. This problem is typically solved by using machine learning approaches. Ren et
al. [16] exploit an over-segmentation with Markov Random Fields followed by a tree-structured
algorithm. The works of [17] and [18] instead use Conditional Random Fields (CRF). The method
of [19] also uses a CRF model that captures planar surfaces and dominant lines. Another work
based on CRFs is [20], that combines them with decision forests. The approach of [17] combines
CRF with mutex constraints based on geometry data while the approach of [18] combines 2D
segmentation, 3D geometry data and contextual information. The work of [21] is instead based
on a proposal process that generates spatial layout hypotheses followed by a sequential inference
algorithm.

Recently, deep learning algorithms have been exploited for the semantic segmentation task
[22, 23, 24]. One of the first solutions exploiting deep learning is [23], that uses a multiscale
Convolutional Neural Network. The method of [24] is able to achieve a very high accuracy by
exploiting Fully Convolutional Networks. The approach of [5] uses a CNN working on geometric
features. Wang et al. [25] use two different CNNs, one for color and one for depth, and a feature
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transformation network able to separate the information common to the two modalities from the
one specific of each modality. The work of [26] jointly solves the semantic labeling together with
depth and normal estimation using a multiscale CNN. Finally the method of [27] uses deep learning
to extract superpixel features that are then classified with SVMs.

The combination of segmentation and semantic labeling has been considered in [28], that em-
ploys multiple segmentations to generate the regions to be used for object detection and recogni-
tion. Multiple segmentations are used also by [29] that deals with the problem of object segmenta-
tion using a sequence of constrained parametric min-cut problems.

Even if several different approaches for this task have been proposed, the proposed method
has some original features not present in previous works, in particular the usage of surface fitting
cues and the strict coupling between the semantic labeling and the segmentation, with the idea of
exploiting the deep learning descriptors to control the iterative merging together with fitting cues.
This allows it to obtain very accurate results even if the deep learning framework is simpler than
some of the related works. Furthermore, while many related works strongly rely on the planar
surface assumption the proposed model properly accounts for arbitrarily shaped regions.
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Fig. 1. General architecture of the proposed method

3. Architecture of the proposed method

The proposed method is organized in 3 main blocks as shown in Figure 1. Color and depth data
are used to compute a set of nine-dimensional vectors containing the 3D location, the surface
normal information and the color representation for each sample. Then the algorithm computes
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an over-segmentation of the scene using the 9D vectors exploiting a spectral clustering algorithm
derived from [2, 3] (Section 4). After performing the over-segmentation, a NURBS surface is fitted
over each segment using the approach detailed in Section 5. The fitting error and the curvature
information for the fitted surfaces are also extracted. This information is fed to a Convolutional
Neural Network together with color and HHA descriptors. The network (Section 6) is trained
for the semantic labeling task and computes a descriptor vector for each sample representing the
probabilities of the various classes at the pixel location. The descriptors are aggregated inside each
segment in order to obtain a unique descriptor for the segment. The third step is an iterative region
merging algorithm (Section 7). It firstly analyzes the segments and computes an adjacency map.
In the map two segments are marked as adjacent if they are connected and have compatible color
and geometry data on their shared boundary. The similarity between CNN descriptors is then used
to sort the couples of adjacent segments. Couples with a low similarity score according to the
CNN descriptors are discarded and the remaining ones are processed in order of similarity. After
selecting a couple, a NURBS surface is fitted over the merged region obtained by joining the two
segments and the accuracy of the fitting is compared with the ones of the two segments. If the
fitting error decreases after the merging (a hint that the two segments belong to the same surface)
the merging is performed, otherwise the operation is discarded. The algorithm proceeds iteratively
until there are no more segments to merge. Finally the probability vectors from the CNN are used
to assign a label to each of the final segments in order to get also the semantic information. The
obtained results are presented in Section 8.

4. Over-segmentation of RGBD Data

To segment the acquired scene, a multi-dimensional vector enclosing the color and spatial infor-
mation is built for every pixel pi of the input image with valid depth information. The first three
components L(pi), a(pi), b(pi) contain the color information in the perceptually uniform CIELab
space. Then, the 3D position x(pi), y(pi), z(pi) and the surface normal nx(pi), ny(pi), nz(pi) are
considered (the 3D coordinates are calculated based on the sensor calibration information while
for normal computation we used the approach of [30]). To achieve a consistent representation
for these different types of information, the color, geometry and orientation average standard de-
viations σc, σg and σn are computed from the input image and depth map. Then, each of the 3
set of components is normalized by the corresponding standard deviation, providing normalized
vectors [L̄(pi), ā(pi), b̄(pi)], [x̄(pi), ȳ(pi), z̄(pi)] and [n̄x(pi), n̄y(pi), n̄z(pi)] and finally the nine-
dimensional representation:

p9D
i = [L̄(pi), ā(pi), b̄(pi), x̄(pi), ȳ(pi), z̄(pi), n̄x(pi), n̄y(pi), n̄z(pi)]. (1)

These 9D vectors representing the acquired scene are then segmented [2, 3] by means of Nor-
malized Cuts spectral clustering [1] with Nyström acceleration [31]. The algorithm parameters are
set in order to create a large number of segments (over-segmentation), since the final result will be
produced by the merging procedure of Section 7.

5. NURBS Fitting on the Segmented Regions

The following step is the approximation of each segment with a Non-Uniform Rational B-Spline
(NURBS) surface [32]. This is used twice in the proposed method: firstly, in order to produce
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an additional set of input cues for the CNN classifier (Section 6), secondly, in order to evaluate if
segments produced by the merging operations correspond to a single scene object (Section 7).

By means of NURBS we can approximate each segment (including non-planar regions) with a
continuous parametric surface S(u, v), computed by solving an over-determined system of linear
equations in the least-squares sense. We refer the reader to [3] for the details on how we select the
NURBS parameters (e.g., the degrees) and how we setup the linear system. We underline that in
our formulation the number of surface control points, corresponding to the degrees of freedom of
the model, is proportional to the number of pixels in the segment to approximate. This prevents
the fitting accuracy to be better on smaller segments, favoring over-segmentation in the final result
[3]. Moreover, the usage of NURBS surfaces provides a geometric model suitable for arbitrary
shapes, differently from several competing schemes [15, 9] that are more appropriate for scenes
where most surfaces are planar.

Fig. 2. Fitting error for a NURBS surface approximating a segment containing 2 different objects.
The red areas correspond to larger fit error. Notice how the large fit error between the teddy head
and the monitor reveals that the two segments do not actually belong to the same object.

After fitting the NURBS surfaces, two additional clues can be associated to each sample. The
first one is the fitting error, i.e., the distance between each 3D position acquired by the sensor and
the corresponding location on the fitted surface. This will be used both as an input for the CNN
classifier and to recognize if a segment contains a single object (for segments, the Mean Squared
Error will be considered). Notice how a large fitting error is a hint of the fact that a segment covers
multiple objects, as exemplified in Fig. 2. The second one is given by the two principal curvatures
(i.e., the maximum and minimum local curvature values, see [33]) at each pixel location. These
quantities are intrinsically related to the geometric shape of the fitted surface, then we use them as
an additional input channel for the CNN classifier.

6. Classification with Deep Learning

In this step we employ a machine learning stage in order to produce classification data for the input
scene, that is used not only to produce the semantic labels but also to decide which regions of the
over-segmentation should belong to the same segment in the final segmentation.

The idea is to exploit the output of a Convolutional Neural Network (CNN) trained for semantic
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image segmentation in order to compute a pixel-wise high-level description of the input scene.
Specifically, a descriptor vector is associated to each pixel by considering the final layer of the
network, a standard softmax classifier. This information is then used to compute a similarity
score between couples of adjacent segments and, at the same time, to provide the input image
with semantic labels. In particular, the proposed similarity score is exploited to drive the merging
procedure detailed in Section 7, using it both to decide whether any two adjacent segments should
be merged together as well as to determine the order in which candidate couples of segments are
selected for the merging operations.

The CNN takes in input various cues:

• Color data, represented by the 3 components in the RGB color space.

• The geometry information. We represented it with three channels containing, for each sample,
the horizontal disparity h1, the height above the floor h2, and the angle of the normal with the
vertical direction a. This representation, typically abbreviated with HHA, has been introduced
by [5] and provided better performances than the direct usage of geometry and orientation
information.

• Surface fitting information, represented with a 3D vector containing the fitting error f and the
two principal curvatures c1 and c2.

For each point of the scene, a 9D vector is used to store this information as

pcni = [R(pi), G(pi), B(pi), h1(pi), h2(pi), a(pi), f(pi), c1(pi), c2(pi)]. (2)

Finally, the vectors are arranged over the image pixel lattice to produce, for each scene in the
dataset, a 9-channel input representation.
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Fig. 3. Layout of the proposed Convolutional Neural Network

An overview of the employed network structure is shown in Fig. 3. The network has been
constructed starting from the architecture employed in [34, 35, 4] by extending each of the original
layers into a group of 3 layers. In order to avoid a too large increase in computation time no multi-
scale input representation has been used. A sequence of convolutional layers is applied in order to
extract a local representation of the input.
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More in detail, each 9-channel input image passes through nine convolutional layers, arranged
into three main blocks each one containing three layers (see Fig. 3). Each block corresponds to
one of the layers in our previous approach [4] and works with a constant resolution and number
of filters. Moving from one block to the next instead the resolution is reduced of a factor of 2
and the number of filter increases. Every block is made up to three convolutional layers (CONV)
each followed by a hyperbolic tangent activation function (TANH). The first two blocks have also
a final max-pooling (MAXP) layer, while the last convolutional layer of the last block does not
have any activation function. Finally, a pixel-wise softmax classifier is applied on top of the last
convolutional layer.

In order to reduce the computation time, input data are fed to the CNN at the reduced resolution
of 320 × 240. The convolutional layers have 90 filters in the first block, 128 in the second block
and 256 in the last one (notice that the layers in the last blocks work at a lower resolution, thus an
higher number of filters can be used without affecting too much the computation time). All filters
have a size of 7× 7 pixels, while the final softmax classifier has a weight matrix of size 256× 14
and no bias.

The first layer filters are arranged into 9 groups so that filters in the i-th group are connected
to the i-th input channel only. Also, local contrast normalization is applied to each input channel
independently, allowing filter weights in the first convolutional layer to converge faster.

The network is trained to produce a semantic segmentation of the input image by labeling each
pixel in the scene with one out of 14 different semantic labels. To this aim, a multi-class cross-
entropy loss function is minimized throughout the training process.

7. Region Merging Procedure

The next step is the merging procedure, that starts from the initial over-segmentation and iteratively
joins couples of segments to finally obtain the objects of the scene. The process is visualized in the
bottom half of Fig. 1 and summarized in Algorithm 1.

The procedure first identifies the couples of segments that are suitable to be merged. To this
aim, it creates an adjacency matrix, storing for each couple of segments whether they are adjacent
(that is, candidate for merging) or not. Two segments are considered as adjacent if the following
conditions hold (see [3] for additional details):

1. They must be neighboring on the grid given by the depth map.

2. The depth information must be compatible along the shared boundary. Precisely, the differ-
ence ∆Zi between the depth values on the two sides of the edge is computed for each point
Pi in the common boundary CC . This difference must be smaller than a threshold Td along at
least half of the boundary, i.e.,:

|Pi : (Pi ∈ CC) ∧ (∆Zi ≤ Td)|
|Pi : Pi ∈ CC |

> 0.5 (3)

3. Also the color information must be consistent. A condition similar to the one used for the
depth data is required for the color difference in the CIELab space ∆Ci with a threshold Tc:

|Pi : (Pi ∈ CC) ∧ (∆Ci ≤ Tc)|
|Pi : Pi ∈ CC |

> 0.5 (4)
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4. The same is required for the orientation information, the angle between the two normal vec-
tors ∆θi being compared to a threshold Tθ:

|Pi : (Pi ∈ CC) ∧ (∆θi ≤ Tθ)|
|Pi : Pi ∈ CC |

> 0.5 (5)

If the above conditions are fulfilled, the two segments are considered as adjacent. If necessary in
order to reduce computation time, this procedure can be dropped and replaced by the assumption
that all the connected segments are adjacent with a limited impact on the algorithm performances.

Subsequently, for each couple of adjacent segments the similarity bi,j is computed from the
information inferred during the machine learning stage. The exploited idea is that, apart from
predicting the semantic labels, the output of the softmax classifier can also be used to produce
a descriptor vector associated to each segment and, in the end, to compute a similarity score for
any couple of segments. For each pixel pi, a descriptor vector ci = [c1i , . . . , c

14
i ] is extracted from

the output of the softmax classifier. Notice that a linear interpolation is applied in order to resize
the output from its actual size (i.e., 80 × 60 × 14 pixels) to the size of the input image. Each
descriptor vector can be considered as a discrete probability distribution (PDF) associated to the
corresponding pixel, since its elements are non-negative values summing up to 1.

A probability density function si = [s1i , . . . , s
14
i ] can be associated to each segment Si as well,

by simply computing the average of the PDFs associated to the pixels belonging to the segment,
i.e.,

si =

∑
j∈Si

cj

|Si|
. (6)

Given two segments Si and Sj , an effective approach in order to estimate their similarity is to
compute the Bhattacharrya coefficient between their PDFs si and sj respectively, i.e.,

bi,j =
∑

t=1,..,14

√
stis

t
j. (7)

As an example, Fig. 4 depicts the proposed similarity score between touching segments on a
sample image. The lower is the similarity bi,j between segments, the darker is the color of the
boundary between them. As can be seen in Fig. 4a, different objects usually have a low similarity
value while segments belonging to the same object tipically share higher bi,j values (lighter bound-
aries). Notice how in Fig. 4b the boundaries between segments at the very end of the merging stage
(see Section 7) are more likely to correspond to low similarity scores.

The couples are placed in a priority queue QA sorted based on their similarity values bi,j , and
the ones with similarity bi,j smaller than a threshold Tsim are discarded so that they will not be
considered for the merging operations (we used Tsim = 0.77 in the results). The aim is to prevent
segments with low similarity to be merged, since it is reasonable to expect that they correspond to
different objects or portions of the scene.

The algorithm then processes the couple with the highest similarity score. Let Si∗ and Sj∗ be
the two segments and let Si∗∪j∗ be their union. A NURBS surface is fitted on each of the two
regions i∗ and j∗ (see Section 5) and the fitting error, i.e., the Mean Squared Error (MSE) between
the actual and the fitted surface, is computed for both segments providing the values ei∗ and ej∗ .
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a) b)

Fig. 4. Similarity values bi,j computed on a sample scene: a) bi,j values between segments in the
initial over-segmentation; b) bi,j values between segments at the end of the merging procedure.
The color of the boundary between any two touching segments is proportional to their similarity
score (white corresponds to high bi,j values and black to low ones)

The fitting error ei∗∪j∗ on segment Si∗∪j∗ is also computed and compared to the weighted average
of the errors on S∗i and S∗j :

ei∗|Si∗ |+ ej∗|Sj∗ | > ei∗∪j∗(|Si∗|+ |Sj∗ |) (8)

If Equation (8) is satisfied, i.e., the fitting error is reduced, then the two segments are joined,
otherwise the union of the two segments is discarded. If the joining of S∗i and S∗j is performed,
all the couples including any of the two segments are deleted from QA. The priority queue is then
updated by considering Si∗∪j∗ adjacent to all segments that were previously adjacent to Si∗ or to
Sj∗ and by adding the corresponding couples if their similarity score is greater than or equal to
Tsim. In order to compute the similarity of the new couples, the descriptor vector si∗∪j∗ associated
to Si∗∪j∗ is first calculated with Equation (6), then Equation (7) is used.

The next couple to be processed is then removed from the front of the queue and the algorithm
iterates until no more couples are present in the queue.

After getting the final segmentation, a semantic label is also computed for each segment by
checking the descriptors of all the pixels in the segment (computed in Section 6) and assigning the
most common class to the segment. Notice that average and max pooling have also been considered
for this task, but they did not lead to better performances than this simple strategy.

Algorithm 1 summarizes the whole merging procedure, while some examples of intermediate
steps are shown in Fig. 5 and in the videos available as additional material.

8. Experimental Results

We tested the proposed approach on the NYU Depth Dataset V2 (NYUD2) [12]. The NYUD2
dataset is made of 1449 indoor scenes acquired with a first generation Kinect. For each scene
a color view and a depth map are provided. We used the updated ground truth labels from [36]
since the original ones have missing areas. The original 894 categories have been clustered into 14
classes as proposed in [35] since this grouping is used for the evaluation of competing approaches.
The dataset has been divided in two subsets using the standard train/test separation with 795 and
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Algorithm 1 Merge algorithm
QA ← Priority queue, sort by similarity value
for each couple of adjacent segments Ai,j = {Si, Sj} do

if bi,j ≥ Tsim then
QA.push(Ai,j)

end if
end for
while QA 6= ∅ do
Ai∗,j∗ ← QA.pop()
Compute fitting error on merged segment Si∗∪j∗
if Equation (8) is satisfied then

Remove all Ai,j such that i = i∗ ∨ j = j∗ from QA

for each Sk adjacent to Si∗∪j∗ do
if bi∗∪j∗,k ≥ Tsim then
QA.push(Ai∗∪j∗,k)

end if
end for

end if
end while

Initial Segmentation Iteration 5 Iteration 10 Iteration 15

Iteration 20 Iteration 25 Iteration 30 Final Result

Fig. 5. Some steps of the merging procedure on the scene of Fig. 6, row 6. The initial over-
segmentation, the output after 5, 10, 15, 20, 25, 30 iterations and the final result (iteration 32) are
shown.
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654 scenes respectively. For the semantic labeling we provide the results on the test set since this
is the approach used by all the competing approaches. For segmentation instead most approaches
are evaluated on the complete dataset. To get the results in this case two independent evaluations
have been done: in the first experiment we used the standard train/test subdivision as before while
in the second the train and test sets have been swapped.

Notice that no expansion of the dataset has been used in the training. Concerning the parameters
we used σ = 3 for the normalized cuts algorithm while for the adjacency computation we used
Td = 0.2 m, Tc = 10 and Tθ = 4◦ as threshold values. In the CNN optimization, we use quadratic
regularization with coefficient 0.001 and stochastic gradient descent for the weights optimization.
The learning rate has initial value 0.01 and is updated with an adaptive decay policy reducing it
of a factor 0.7 after 10 epochs without improvement. The training of the CNN network on the
NYUD2 dataset required around 36 hours on a workstation with an Intel i7-970 CPU at 3.2 Ghz
and an NVIDIA Tesla K40 GPU.

The proposed method produces a segmentation with semantic labels and it can be exploited
both as a segmentation algorithm and as a semantic classification one. This section is split in two
parts evaluating the proposed algorithm for the two considered tasks.

8.1. Evaluation of the segmentation accuracy

The comparison of our approach with state-of-the-art methods on the NYUD2 dataset is presented
in Table 1 (the results of some competing approaches have been collected from [13] and [3]). The
compared approaches are the works of [13] and [14] based on clustering and region merging, the
MRF scene labeling approach of [16], a variation of [37] that exploits also geometry data, the
method of [15] exploiting dynamic programming and the multi-layer clustering strategy of [8]. We
also compared with our previous works, i.e., the approach of [2] based on normalized cuts, the
region merging approach of [3] and the method of [4] that represents the starting point for this
work. The method of [3] exploits an iterative merging scheme driven by surface fitting but does
not exploit any machine learning clue, so it can be used as a reference to evaluate the impact on the
performances due to NURBS surface fitting (i.e., roughly corresponding to the difference between
[2] and [3]) and due to the CNN descriptors (i.e., the further improvement from [3] to the proposed
work).

The results have been compared with ground truth data using 2 different metrics (see [38]
for details). The first is the Variation of Information (VoI) and the second the Rand Index (RI).
The mean VoI score of our approach is 1.92. This is the best value among all the considered
approaches and the gap is significant. The only method getting close to the proposed one is [4]
(i.e., the previous version of this work based on the same segmentation algorithm with a simpler
semantic classification stage). The mean score according to the RI metric is 0.91. This value is
better than most compared approaches, i.e., [37], [15], [2], [3], [13] and [16], and is the same of
the two best competitors, i.e., [14] and [4]. Another advantage is that our method does not rely on
the assumption of planar surfaces (NURBS can handle complex shapes), while many competitors
(e.g., [13], [14] and [15]) exploit this assumption thus getting accurate results on the NYUD2
dataset (that has many planar surfaces), but reducing their generalization capabilities on scenes
with non-planar surfaces.

Some visual examples of segmentations performed with the proposed approach are displayed
in Fig. 6. The sequence of merging steps for a couple of sample scenes is shown in the videos
available at http://lttm.dei.unipd.it/paper_data/iet_semantic . The images show that
the algorithm is able to properly segment different challenging scenes. The background and the
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Table 1 Average VoI and RI values on the NYUD2 dataset (1449 scenes). The Table shows the data
for some state-of-the-art methods from the literature, for our previous works and for the proposed method. Note that
lower values are better for VoI while higher ones are better for RI.

Method VoI RI
Hasnat et al. (2014) [13] 2.29 0.90
Hasnat et al. (2016) [14] 2.20 0.91

Ren et al. [16] 2.35 0.90
Felzenszwalb et al. [37] 2.32 0.81

Taylor et al. [15] 3.15 0.85
Khan et al. [8] 2.42 0.87

Dal Mutto et al. [2] 3.09 0.84
Pagnutti et al. [3] 2.23 0.88
Minto et al. [4] 1.93 0.91

Proposed method 1.92 0.91

larger surfaces are divided in several segments in the initial over-segmentation but they are properly
merged by the iterative algorithm since the CNN descriptors are a very useful clue in order to detect
if segments are part of the same object or region. On the other side the algorithm is able to correctly
recognize and keep separate most of the scene objects. It is also possible to observe that the objects’
edges are precise and there are no small segments close to edges as in some competing methods.
However there are a few minor mistakes specially on small objects.

8.2. Evaluation of the classification accuracy

The proposed approach provides also a semantic label for each segment. In order to evaluate the
accuracy of this labeling we compared it with some competing approaches on the NYUD2 test set.
The compared state-of-the-art approaches are the methods of [23] that uses a multi-scale CNN,
of [39] that uses a hierarchy of super-pixels to train a random forest classifier, of [27] that uses
deep learning to extract super-pixels features, of [25] exploiting two different CNNs, of [20] using
Random Forest and CRFs and finally [26] using a multi-scale deep learning architecture.

Table 2 reports the results: two different metrics have been considered, the per-pixel accuracy,
counting the percentage of correctly classified pixels and the average class accuracy, obtained by
computing the percentage of correctly classified pixels for each class independently and averaging
the values. Notice that the second number is smaller since classes with a low number of samples
are typically harder to recognize.

The proposed deep learning architecture achieves a mean pixel accuracy of 64.4% on the test set.
By taking the segmentation output of Subsection 8.1 and assigning a single label to each segment
as described in Section 7 it is possible to refine the labeling and increase the accuracy to 67.2%.
This is a very good result outperforming all the compared approaches except [26]. Notice that [26]
achieves very high performances by exploiting a much more complex deep learning architecture.
In any case our method is the one that gets closer to it, while even the very recent methods of [39]
and [25] have lower performances than ours.

The results are also confirmed by the average class accuracy. The CNN output accuracy is of
51.7%, a remarkable result outperforming all compared approaches except [25] and [26]. By re-
fining it with the segmentation the accuracy increases to 54.4%, outperforming also [25]. Table
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Color View Initial Over-Segmentation Final Segmentation

Fig. 6. Initial over-segmentation and output of the proposed approach for some example scenes.
The displayed scenes are the number 72, 330, 450, 846, 1105, 1110 and 1313 of the NYUD2
dataset.
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3 reports also the accuracy for each class, notice how it is very high on several classes and quite
low only for a few classes. In particular the accuracy is lower on classes without a well defined
geometric structure, like the Objects class, that includes many different things inside or the Pic-
ture/wall deco class, that is associated to a quite flat and not very descriptive geometry. Another
issue is that the dataset is not balanced and there are uncommon classes for which a limited amount
of training data is available, e.g., the TV/monitor class, that accounts for just 1% of the samples
and is the worst for our approach. On the other side the Floor and Wall classes have a very regular
structure are detected with an high accuracy. Table 2 also report the improvement obtained by
refining the output with the segmentation, notice how it improves for all classes except a small loss
on the Picture/wall deco and Object classes. This is due to the fact that the segmentation improves
the boundary accuracy and removes isolated detections typically due to noise (but they can seldom
correspond to small objects).

A visual evaluation of the results on some sample scenes is shown in Fig. 7, notice how the
classification is accurate even in challenging situations (e.g., closed windows) and how the refine-
ment with segmentation largely improves the edges accuracy. However a few errors are present,
e.g., beds exchanged with sofas that have a similar visual appearance.

We also tried different approaches than simply selecting the most common label for the segmentation-
based refinement, however the average pooling scheme lead to the same pixel accuracy of 67.2%
with just small differences on the accuracy of the single classes, while the max-pooling scheme
lead to less satisfactory performances with a 65.9% accuracy.

The implementation of the approach has not been optimized, currently the processing of a scene
requires on average less than 2 minutes. Furthermore most computation time is spent on the initial
over-segmentation (87s) that could be replaced with a simpler superpixel segmentation scheme.

Table 2 Average pixel and class accuracies on the test set of the NYUD2 dataset (654 scenes) for some
state-of-the-art methods from the literature and for the proposed method.

Approach Pixel Accuracy Class Accuracy
Couprie et al. [23] 52.4% 36.2%
Hickson et al. [39] 53.0% 47.6%
A. Wang et al. [27] 46.3% 42.2%
J. Wang et al. [25] 54.8% 52.7%

A. Hermans et al. [20] 54.2% 48.0%
D. Eigen et al. [26] 75.4% 66.9%

Proposed method (CNN output) 64.4% 51.7%
Proposed method (with segmentation) 67.2% 54.4%

9. Conclusions

This work introduced a combined RGBD segmentation and semantic labeling algorithm exploiting
deep learning and an iterative merging procedure. Surface fitting information has been used both
to control the merging and as an additional clue improving the performances of the Convolutional
Neural Network. The joint usage of geometric information and of an estimate of the similarity
between segments from the CNN descriptors allowed to properly select the merging operations
to be performed. The experimental evaluation showed that our approach obtains state-of-the-art
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Color Conv. Neural Net Final labeling Ground
View labeling (with segmentation) truth

Bed Objects Chair Furniture Ceiling Floor Picture/Deco

Sofa Table Wall Windows Books Monitor/TV Unknown

Fig. 7. Semantic labeling of some sample scenes from the NYUDv2 dataset. The figure shows the
color images, the labeling from the Convolutional Neural Network, the refined labeling exploiting
segmentation data and the ground truth for scenes 39, 280, 433 and 462
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Table 3 Average accuracy for each of the 13 classes on the test set of the NYUDv2 dataset for the proposed approach
(the unknown class has not been considered consistently with the evaluation of all the compared approaches)

Class Accuracy Accuracy Accuracy
(CNN) (with segmentation) Improvement

Bed 58.0% 64.1% 6,1%
Objects 43.2% 41.8% -1,4%
Chair 35.4% 38.4% 3,0%

Furniture 64.7% 70.2% 5,5%
Ceiling 62.8% 64.2% 1,4%
Floor 92.2% 93.7% 1,5%

Picture / wall deco 30.5% 26.8% -3,7%
Sofa 55.8% 66.5% 10,7%
Table 42.0% 46.0% 4,0%
Wall 83.7% 86.3% 2,6%

Window 53.9% 55.8% 1,9%
Books 23.8% 24.0% 0,2%

Monitor / TV 26.2% 29.1% 2,9%
Average 51.7% 54.4% 2,7%

performances both in the segmentation and in the semantic labeling task.
Further research will explore the usage of other deep learning structures, e.g., Fully Convolu-

tional Networks [24]. The direct usage of deep learning techniques for the selection of the merging
operations to be performed will also be considered. The initial over-segmentation step is another
step that can be improved with faster approaches or multiple segmentations combined together.
Finally more advanced strategies for the refinement of the labeling with segmentation information
will be considered including the use of deep learning architectures for this task [40].
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