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Abstract. The removal of Multi-Path Interference (MPI) is one of the
major open challenges in depth estimation with Time-of-Flight (ToF)
cameras. In this paper we propose a novel method for MPI removal and
depth refinement exploiting an ad-hoc deep learning architecture working
on data from a multi-frequency ToF camera. In order to estimate the
MPI we use a Convolutional Neural Network (CNN) made of two sub-
networks: a coarse network analyzing the global structure of the data
at a lower resolution and a fine one exploiting the output of the coarse
network in order to remove the MPI while preserving the small details.
The critical issue of the lack of ToF data with ground truth is solved by
training the CNN with synthetic information. Finally, the residual zero-
mean error is removed with an adaptive bilateral filter guided from a
noise model for the camera. Experimental results prove the effectiveness
of the proposed approach on both synthetic and real data.

Keywords: ToF sensors, denoising, multi-path interference, depth ac-
quisition, Convolutional Neural Networks

1 Introduction

Time-of-Flight (ToF) cameras are active range imaging systems able to estimate
the depth of a scene by illuminating it with a periodic amplitude modulated
light signal and measuring the phase displacement between the transmitted and
received signal [1]. These sensors achieved a wide popularity thanks to their
ability to acquire reliable 3D data at video frame rate. In this paper we propose
a method for ToF data denoising that focus on the removal of the Multi-Path
Interference (MPI)corruption and of the zero-mean error caused by photon shot
and sensor thermal noise. ToF acquisitions rely on the key assumption that the
received light signal has been reflected only once inside the scene. Unfortunately
this is not true in practice and the projected light can be reflected multiple times
before going back to the ToF sensor: this issue is called Multi-Path Interference
(MPI) and it is one of the main sources of error in ToF data acquisition. The
MPI leads to a depth overestimation and this phenomenon is scene dependent,
indeed it is related to both the geometry and the properties of the materials
inside the scene. The removal of MPI is an ill posed problem with standard
single frequency ToF acquisitions but since MPI depth distortion is related to



2 G. Agresti and P. Zanuttigh

the modulation frequency of the ToF signal, multi-frequency ToF (MF-ToF)
sensors can be used for MPI estimation. Some approaches [2–4] following this
rationale have been proposed even if with not completely satisfactory results.

Convolutional Neural Networks (CNN) have been widely employed for tasks
like denoising and super resolution of image and video data. The application
of CNNs to data acquired with ToF cameras for denoising and MPI removal
has been investigated only in few works [5–9] due to the difficulty of acquiring
the depth ground truth information needed for supervised learning. Here we ex-
ploit the information acquired with MF-ToF sensors as input for a deep network
architecture able to estimate the unknown MPI corruption. We designed an ad-
hoc CNN for this task made of two parts, a coarse one able to understand the
global structure of the scene and to globally locate MPI, and a fine one that
takes in input the output of the coarse network and allows us to remove the
MPI while preserving the small details. Furthermore, an ad-hoc pre-processing
step combines the information about the depth and amplitude at multiple fre-
quencies into novel representations that allows the network to learn key clues to
estimate the MPI. The critical task of training the deep network has been solved
by constructing a synthetic dataset and generating the MF-ToF data using a
ToF simulator. The MPI corruption is then removed by subtracting the CNN
estimation of the interference. Finally an adaptive bilateral filter guided by an
estimation of the ToF noise is used to remove also the zero-mean error. The
experimental evaluation has been done on both synthetic and real data, proving
how the training on synthetic data can generalize to real world scenes.

2 Related works

Many different approaches for MPI removal in continuous wave ToF systems
employing sinusoidal waveforms have been proposed [2, 3, 10, 11] and an exten-
sive review can be found in [12]. This task is particularly complex since it is
an ill-posed problem regarding the retrieval of the sinusoidal light waves related
to the shortest paths linking the ToF pixels to the scene points. This is due to
various reasons: first of all, the light rays which are interfering are sinusoidal
waves at the same modulation frequency and the MPI effects can not be directly
detected only by looking at the received waveform in the single frequency case.
Moreover since the MPI is scene dependent, the scene geometry is needed to
solve the problem but the MPI needs to be removed to estimate the geometry
thus creating a chicken-and-egg problem. There are four main families of ap-
proaches for MPI correction: methods that use single frequency ToF data and
scene geometry, methods based on ray separation, methods based on direct and
global light separation and those based on machine learning approaches.

The methods which use single frequency ToF data exploit some reflection
models in order to estimate the geometry of the scene and correct MPI as done
by Fuchs et Al. in [13], where reflections with a maximum of 2 bounces are
considered. This method is further extended in [14] where multiple albedo and
reflections are taken in account. Jimenez et Al. [15] proposed a radiometric
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model to simulate ToF acquisitions and the reflection phenomenon and then
correct MPI through non linear optimization.

In methods based on ray separation, the light is described as a summation
of single sinusoidal waves which are interfering one another in case of MPI.
The ray with the shortest path is assumed to be the one carrying the correct
depth information (direct light). The method proposed by Freedman et Al. in
[2] uses 3 modulation frequencies and exploits MPI frequency diversity and an
L1 optimization to find the light backscattering vector that is assumed to be
sparse. In [3], a closed form solution for MPI removal using multi-frequency ToF
data is proposed. A method based on the backscattering vector estimation by
using random on-off codes instead of standard sinusoidal waveforms for light
modulation is proposed in [10].

In the third family of approaches the light is described as the summation of
only two sinusoidal waves, one related to the direct component while the other
groups together all the sinusoidal waves related to global light (the summation
of all the interfering rays). Gupta et Al. [11] proposed to use an high modulation
frequency to cancel out the sinusoidal global component of the light. The meth-
ods proposed by Naik et Al. [16], Whyte et Al.[17] and Agresti et Al. [18] are
inspired by the work presented by Nayar in [19]. These methods use an external
projector to illuminate the scene with spatial high frequency patterns modulated
by the ToF sinusoidal signal to separate the global and direct component of the
light and correct MPI.

Only recently, methods based on deep learning have been used on ToF data
for denoising purpose. This is due to the fact that depth ground truth is difficult
to collect. In [5], ToF data is acquired from a robotic arm setup and the depth
ground truth is estimated with a Strucured Light system. In [6], an auto-encoder
CNN is used with a 2 phase training, in the first phase real depth data without
ground truth is used, then the encoder part is kept fix and the decoder part is
trained with a synthetic dataset in order to learn how to correct MPI. These
methods have in input data taken from single-frequency ToF cameras while our
proposal rely on data acquired with multi-frequency ToF cameras. We will show
that this choice will improve the MPI correction performance as also done very
recently by Su et Al. in [8] and Guo et Al. in [9]. The first presents an end-to-
end deep learning approach to directly estimate a denoised depth map from raw
correlation frames. In the second the motion blur is taken in account.

It is possible to find in literature many applications of CNN for 3D estimation
from monocular and stereo RGB images [20–22]. An example is the monocular
estimation method proposed by Eigen in [21], that exploits a Coarse-Fine net-
work, and its improvement proposed in [22] where a multi-scale CNN is used.

3 Proposed method

The task of the proposed method is to obtain accurate ToF depth data by
removing MPI corruption and reducing zero-mean error related to shot noise.
The MPI is estimated by exploiting a CNN whose input are data extracted from
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a MF-ToF camera, while for the zero-mean error reduction instead we use an
adaptive bilateral filter guided by the noise statistic estimated on the input data.

ToF camera pixels are able to compute the correlation function between the
received light sinusoidal waves and a reference signal: the computed correlation
function appears to be a sinusoidal wave that can be modeled as:

c(θi) = B +Acos
(
θi −

4πfm · d
cl

)
= B +Acos

(
θi −Kd

)
(1)

where θi ∈ [0; 2π) is the phase sample of the correlation function that is
captured by the ToF pixels (nowadays ToF cameras use 4 samples), fm is the
modulation frequency of the light signal, B and A are respectively proportional
to the intensity and the amplitude of the received signal, cl is the speed of
light. The depth d of the observed scene point can then be estimated from the 4
correlation samples [1]. This model is correct if each camera pixel receives only
one ray from the scene, the direct one. If the pixels receive the summation of
light rays reflected multiple times, we have the MPI phenomenon. In this case
the ToF correlation function can be modeled as

c(θi) = B+Adcos
(
θi−Kdd

)
+

∫ ∞
dd+ε

A′xcos
(
θi−Kx

)
dx = B+AFF cos(θi−KdFF )

(2)
where Ad and dd are respectively the amplitude and the depth related to the
direct light, instead the integral models the global light as the superposition of
the rays that are reflected more than once inside the scene. Each interfering ray
has its own phase offset and amplitude. In case of MPI, i.e., when ∃x : A′x 6= 0, the
depth estimated from Equation 1, dFF , will be bigger than the correct depth dd.
The phase offsets of the interfering rays are frequency dependent and by changing
fm also the estimated depth dFF and the amplitude AFF will be different. This
frequency diversity can be used to understand if MPI is acting on MF-ToF
cameras and can give us cues for its correction as discussed in [2, 3].

In this paper we are going to use data from a ToF camera that captures
the scene using the modulation frequencies of 20, 50 and 60 MHz. We will
extract some features that are meaningful for MPI analysis directly exploiting
the frequency diversity on the acquired depth and amplitude images. Moreover,
we are going to use also information about the geometry of the scene to estimate
the MPI as done in some approaches using single frequency data as [6, 13, 14].
We devised a CNN for the prediction of the MPI corruption to use all these
aspects together. The general architecture of the proposed approach for ToF
depth denoising is shown in Fig. 1.

The data acquired by the MF-ToF system is first pre-processed in order
to extract a representation that contains relevant information about the MPI
presence and strength. As detailed in Section 4, where also the motivation for
the selection of each input source is presented, the deep network has 5 different
input channels containing the ToF depth extracted from the phase at 60 MHz,
the difference between the depth maps at different frequencies and the ratio of
the amplitudes also at different frequencies.
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Fig. 1. Architecture of the proposed approach.

The CNN architecture of Section 5 is made of two main blocks, a coarse
network that takes in input the 5 representations and estimates the MPI at low
resolution and a fine network that takes in input the 5 representations and the
output of the coarse network in order to estimate the MPI interference at full
resolution. The estimated multi-path error is then directly subtracted from the
ToF depth map (at 60 MHz), thus obtaining a depth map free from multi-path
distortion (but still affected by other zero-mean error sources).

The resulting depth map is first filtered with a 3×3 median filter in order to
remove depth outliers, then the final output of the proposed method is obtained
by further filtering it with an adaptive version of the bilateral filter [23] because of
its capability of reducing noise while preserving edges. Bilateral filters have been
already used on ToF data [24, 25], specially to denoise and upsample the depth
map using information from a standard video camera. In our implementation
the bilateral filter is guided by the noise information estimated from the received
signal amplitude and intensity from which the error variance related to shot noise
can be estimated. As suggested in [26], we fixed the spatial smoothing parameter
σd to a constant value, while the range parameter σr is taken proportional to
the level of noise. We made the bilateral filter adaptive by using a per pixel noise
model for σr. In particular we took σr = cr · σ̃n, where σ̃n is an estimate of the
depth noise standard deviation due to shot noise. This can be estimated from
the amplitude Aph and the intensity Iph of the received light signal [27]:

σn(k, h) =
cl

4
√

2πfm

√
Iph(k, h)

Aph(k, h)
. (3)

Aph and Iph are proportional to the intensity and the amplitude of the correlation
function estimated by the ToF pixels. In our experiments we computed σ̃n from
the correlation data and we optimized the values of σd and cr on a subset of
the synthetic training dataset. Then we used the selected values (σd = 3 and
cr = 3.5) in the evaluation phase.
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4 ToF data representation

As mentioned before, we used a CNN to estimate the MPI corruption on the
ToF depth map at 60 MHz that is phase unwrapped by using the 20 MHz and
50 MHz ToF data. Notice that these frequency values have been selected since
they resemble the ones used in real world ToF cameras. We also investigated
the possibility of performing the phase unwrapping using the CNN of Section 5,
but the disambiguation using the MF data proved to be reliable and the deep
network optimization is more stable if already phase unwrapped data is fed to it.
A critical aspect is the selection of input data that should be informative about
the MPI phenomenon. We decided to use as input the following elements:

– The first input C1 = d60 is the ToF depth map at 60 MHz. It is required
not only because it is the corrupted input that needs to be denoised but also
because the geometry of the scene influences the MPI error and the ToF
depth represents the best estimate of the geometry available before the MPI
removal process. We selected the depth captured at 60 MHz since the higher
the modulation frequency, the more accurate the depth estimation.

– The difference between the depth maps estimated at the different modula-
tion frequencies, used since the MPI corruption changes with the frequency
(generally the higher the modulation frequency, the smaller is MPI [11]). We
used the differences between the depths at 20Mhz and 60Mhz, and between
the ones at 50Mhz and 60Mhz, i.e., C2 = d20 − d60 and C3 = d50 − d60.

– The ratio of the amplitudes of the received light signal at different modula-
tion frequencies. In presence of MPI the light waves experiences destructive
interferences and in ToF data acquired in presence of MPI the higher the
modulation frequency, the lower the resulting amplitude. For this reason,
comparing the amplitudes at different frequencies gives us a hint about the
MPI presence and strength. We used the ratios between the amplitudes
at 20Mhz and 60Mhz, and between the ones at 50Mhz and 60Mhz, i.e.,
C4 = (A20/A60)− 1 and C5 = (A50/A60)− 1 (the “−1”term has been intro-
duced to center the data around 0 in case of MPI absence).

The proposed CNN aims at estimating the MPI corruption on the 60 MHz
depth map: the targets for the training procedure have been computed by taking
a filtered version of the difference between d60 and the ground truth depth dGT
(the filtering is used to remove the zero mean error, notice that MPI is a low fre-
quency noise). We decided to use this set of inputs for the proposed Coarse-Fine
CNN since depth and amplitude are data which are generally accessible from
commercial ToF cameras. Moreover, by taking the ratio between the amplitudes
we are canceling out the gain of the sensor, that can be different for different
sensors, making the method more robust to hardware changes. We have tried to
use subsets of the input data, but this reduced the performance in MPI estima-
tion. Notice that other techniques based on multi-frequency approaches as [2, 3]
use a per pixel model based on the sparsity of the backscattering vector A′x of
Equation 2, while in our proposal we are implementing a data-driven model that
will suit the diffuse reflection case and thanks to the CNN receptive fields we
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are capturing the geometrical structure of the scene in addition to the frequency
diversity. We decided to pre-filter the CNN inputs with a 5× 5 median filter to
obtain a more stable input and reduce their zero-mean variation.

As aforementioned, it is difficult to collect a real world dataset big enough
for CNN training with ToF data and the related depth ground truth. For this
reason, we decided to exploit a dataset composed by synthetic scenes, for which
the true depth is known. The ToF acquisitions have been performed with the ToF
Explorer simulator realized by Sony EuTEC starting from the work of Meister
et Al. [28] which is able to faithfully reproduce ToF acquisition issues like the
shot and thermal noise, the read-out noise, artifacts due to lens effects, mixed
pixels and specially the multi-path interference. This simulator uses as input the
scene data generated by Blender [29] and LuxRender [30]. In order to build the
synthetic dataset we started from the set of Blender scenes used in [7]. We used
40 scenes for the training set, while the other 14 different scenes have been used
for testing. Each scene has been rendered from a virtual viewpoint with the ToF
simulator in order to acquire the ToF raw data (amplitude, intensity and depth
image) at the modulation frequencies of 20, 50 and 60 MHz. We also used the
Blender rendering engine to acquire the scene depth ground truth. The dataset
is publicly available at http://lttm.dei.unipd.it/paper_data/MPI_CNN. The
various scenes contain surfaces and objects of different shapes and texture and
correspond to very different environments. They also have a very wide depth
acquisition range from about 50 cm to 10 m and various corners and structures
in which the multi-path phenomenon is critical.

We collected also a set of real scenes with related depth ground truth in order
to validate the proposed method for ToF depth refinement. We used a SoftKinetic
ToF camera in combination with an active stereo system for the acquisitions.
The stereo system and the ToF camera have been jointly calibrated and ground
truth depth estimated with the active stereo system has been reprojected on
the ToF sensor viewpoint. We set up a wooden box (see Fig. 2) that is about
1.5 m wide and 1 m high and composed by a 90o and a 135o angle. The real
world dataset is composed by 8 scenes, each captured by looking at the box from
different viewpoints and by placing in it objects made of wood, polystyrene and
ceramic. Since the acquired dataset is quite small we used it only for testing
purposes, while we used the synthetic data for the training of the network. By
looking at the scene in Fig. 2, it is possible to see how some critical situations for
MPI are present, e.g., the surface angles that are the typical cases where MPI
corruption can be clearly observed.

5 Proposed deep learning architecture

The architecture of the proposed Coarse-Fine CNN is shown in Fig. 3: the
network is made of two main parts, a coarse sub-network and a fine one.

Since the MPI phenomenon depends on reflections happening in different
locations, a proper estimation of its presence needs a relatively wide receptive
field of the CNN in order to understand the geometrical structure of the scene.



8 G. Agresti and P. Zanuttigh

Fig. 2. Wooden box used for the real world acquisition and examples of amplitude
images of the acquired scenes. The wooden box has been captured from different view-
points and with different objects inside.

Following this rationale, the coarse network performs an analysis of the input
data by applying downsampling with pooling layers increasing the receptive
field as a consequence. The coarse network takes in input the 5 data channels
described in Section 4 and is made of a stack of 5 convolutional layers each
followed by a ReLU with the exception of the last one. The first 2 convolutional
layers are also followed by a max-pooling stage reducing the resolution of a
factor of 2. All the layers perform 3× 3 pixels convolutions and have 32 filters,
except the last one that has a single filter, producing as output a low resolution
estimate of the MPI. The estimated MPI error is finally upsampled of a factor
of 4 using a bilinear interpolation in order to bring it back to the original input
resolution. This network allows us to obtain a reliable estimate of the regions
affected by MPI but, mostly due to the pooling operations, the localization of the
interference is not precise and directly subtracting the output of this network to
the acquired data would lead to artifacts specially in proximity of the edges. For
this reason, we used a second network working at full resolution to obtain a more
precise localization of the error. This second network also has 5 convolutional
layers with 3× 3 convolutions and ReLU activation functions (except the last as
before). It has instead 64 filters for each layer and no pooling blocks. The input
of the first layer is the same of the previous network but the fourth layer takes
as input not only the output of the third layer but also the upsampled output
of the coarse network. This allows us to combine the low resolution estimation
with a wide receptive field of the previous network with the more detailed but
local estimation done by the fine network and to obtain an MPI estimation that
captures both the scene global structure and the fine details.

The network has been trained using the synthetic dataset of Section 4. Even
if it is one of the largest ToF dataset with multi-frequency data and ground
truth information, its size is still quite small if compared to datasets typically
used for CNNs training. In order to deal with this issue and avoid over-fitting we
applied data augmentation techniques on the training data as random sampling
of patches, rotation and flipping operations. We extracted 10 random patches
of size 128 × 128 pixels from each of the 40 scenes, then we applied to each of
them a rotation of ±5 degrees and horizontal and vertical flipping. This leads to
a total of about 40× 10× 5 = 2000 patches (invalid patches with non complete
covering on rotated images have been excluded), that represents a good amount
of data for the training of the proposed deep network. The number of patches
could be increased by using smaller patches, but this would weaken the ability
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Fig. 3. Architecture of the Coarse-Fine CNN used for MPI estimation in ToF data

of the network to understand the geometrical structures of the scenes and to
retrieve the MPI corruption.

Due to the small amount of data we have used K-fold validation with K=5
on the training set to validate the hyper-parameters of the CNN and of the
training procedure as the architecture of the network, the number and depth of
the layers, the learning rate and the regularization constant. We have selected
the CNN hyper-parameters in order to avoid overfitting and obtain the minimum
mean validation MAE among the 5 folds. Once the hyper-parameters have been
selected, the CNN has been trained on the whole training set.

For the training we minimized a combined loss made by the sum of two loss
functions, one computed on the interpolated output of the coarse network and
the other computed on the output of the fine network. This approach allowed to
obtain better performances than the separate training of the two sub-networks.
Each of the two loss functions is the l1 norm of the difference between the MPI
error estimated by the corresponding network and the MPI error computed by
comparing the ToF depth at 60 MHz with true depth as described in Section
4. The l1 norm is more robust to outliers in the training process if compared
with the l2 norm and had more stable results in the validation of the network
hyper-parameters. Furthermore the use of l1 norm proved to be more efficient
for image denoising [31]. During the training, we exploited the ADAM optimizer
[32] and a batch size of 16. We started the training with an initial set of weight
values derived with Xavier’s procedure [33], a learning rate of 10−4 and a l2
regularization with a weighting factor of 10−4 for the norm of the CNN weights.
Figure 4 shows the mean training and validation error across all the epochs of
the K-fold validation: we trained the network for 150 epochs, that in our case
proved to be enough for the validation error to stabilize. The network has been
implemented using the TensorFlow framework and the training took about 30
minutes on a desktop PC with an Intel i7-4790 CPU and an NVIDIA Titan X
(Pascal) GPU. The evaluation of a single frame with the proposed network takes
instead just 9.5ms.
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6 Experimental Results

In order to evaluate the proposed approach we used the two different datasets
presented in Section 4. The first is the synthetic dataset, that has been used
both for the training of the CNN and for the evaluation of the performances of
the proposed method. The second one is a smaller real world dataset that has
been used only for evaluation purposes due to its limited size.

6.1 Results on synthetic data

As already pointed out, we kept 14 synthetic scenes for evaluation purposes only.
The scenes used for testing are shown in Fig. 5, notice how they include various
types of settings with different sizes, types of textures and several situations
where the multi-path error can arise. Fig. 6 shows the results of the application
of the proposed approach on a subset of the scenes used for testing. It shows the
input depth map from the ToF camera at 60 MHz (with phase unwrapping), the
depth map after the application of the adaptive bilateral filter and the final result
of the proposed approach with their related errors map and the depth ground
truth information. By looking at the third and fourth columns it is possible to
notice how the adaptive bilateral filter is able to reduce the zero-mean error by
preserving the fine details in the scenes, e.g., the small moon in the castle is
preserved by the filtering process, but the depth overestimation due to MPI is
still present. From the fifth and sixth columns it is possible to see how both
the multi-path error and the zero-mean noise have been widely reduced by the
complete version of the proposed approach. For example in the first 3 scenes
there is a very strong multi-path distortion on the walls in the back that has
been almost completely removed by the proposed approach for MPI correction.
The multi-path estimation is very accurate on all the main surfaces of the scenes,
even if the task proved to be more challenging on some small details like the top
of the pots in row 1 or the stairs in row 2. However notice that thanks to the usage
of the Coarse-Fine network the small details of the various scenes are preserved
and there is no blurring of the edges. This can be seen for example another time
from the details of the castle (e.g., the moon shape) in row 3. The box scene (row
4) is another example of the MPI removal capabilities. Notice how the multi-path
on the edges between the floor and the walls is correctly removed. Also the error
on the slope in the middle of the box (that is more challenging due to bounces
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from locations farther away) is greatly reduced even if not completely removed.
This evaluation is confirmed also by numerical results, the Mean Absolute Error
(MAE) is reduced from 156 mm on the input data to 70 mm.

Fig. 5. Synthetic test set used for evaluating the proposed approach. The figure shows
a color view for each scene in the dataset.

Input data Output of BF Output of our approach Ground
Depth Map Error Map Depth Map Error Map Depth Map Error Map Truth

Fig. 6. Input depth map at 60 MHz, output of the adaptive bilateral filter (BF) and
output of the proposed approach (with MPI correction) on same sample synthetic
scenes with the corresponding error maps.All the values are measured in meters.

Fig. 7 compares the error at 60 MHz with its estimation made by the proposed
CNN architecture. The second column shows the estimation taken from the
interpolated output of the coarse network: notice how the general distribution
of the MPI is correctly estimated but the edges and details (e.g., the moon
over the castle) are lost in this estimation due to the pooling operations that
reduce the resolution. The last column shows instead the output of the Coarse-
Fine architecture and it is possible to notice how the general MPI distribution is
maintained but there is a much higher precision on boundaries and small details.
The second row shows the same data for the stairs scene, also in this case notice
how the general structure is the same but the estimation follows more accurately
the shape of the stairs in the Coarse-Fine output.
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Error map (60 MHz) Coarse CNN estimation Coarse-Fine CNN estimation

Fig. 7. Estimation of the MPI performed by the proposed approach using only the
coarse network or the complete Coarse-Fine architecture.

We also compared the proposed approach with some competing approaches
from the literature. In particular we considered the MF-ToF MPI correction
scheme proposed by Freedman [2] and the approach based on deep learning
presented by Marco in [6] that takes in input the depth map at 20 MHz to
remove MPI. The method proposed by Freedman was adapted to use the same
triple of frequencies used by the proposed approach. The first column of Table
1 shows the MAE obtained by comparing the output of the 3 methods with
the ground truth data on the synthetic dataset. Our approach is able to reduce
the error from 156 to 70 mm, reducing it to less than half of the original error.
It outperforms with a wide margin both competing approaches. The Freedman
method [2] is able to remove only about 10% of the error in the source data
obtaining an accuracy of 140 mm. The method of [2] works under the hypothesis
that the light backscattering vector is sparse and this is not true in scenes where
diffuse reflections are predominant as the considered ones. For this reason, its
effectiveness is limited. The method of [6] works under the assumption that the
reflections are diffuse and it achieves better results removing about 20% of the
original error, but it is still far from the performances of the proposed approach.
This is due to the fact that the CNN proposed in [6] uses single frequency ToF
data, instead we have shown that the multi-frequency approach can achieve much
higher performance using a less complex CNN. The additional material contains
also a detailed analysis of the different methods behavior in proximity of corners.

6.2 Results on real world data

After evaluating the proposed approach on synthetic data we preformed also
some experiments on real world data. For this evaluation we used the real test
set introduced in Section 4 that is composed by 8 scenes. It has a more limited
variety of settings with respect to the synthetic data but still the scenes contain
objects of different sizes, types of material and surfaces with different orientations
where the MPI can arise. The Coarse-Fine CNN was trained on the synthetic
dataset that is composed by scenes with ideal properties, e.g., the reflections
are perfectly diffuse, and due to some limitations of the simulator, the synthetic
data, even if quite accurate, does not exactly model all the issues of real data.
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Synthetic data Real World data
MAE (mm) Relative Err. (%) MAE (mm) Relative Err. (%)

ToF input (60 Mhz) 167.3 - 54.3 -
ToF input (20 Mhz) 327.8 - 72.8 -

Freedman et Al. [2] 149.8 89.5% 51.1 94.1%
Marco et Al. [6] 260.9* 79.6% 51.3* 70.5%

Our Approach 74.9 44.8% 31.9 58.7%
Table 1. Mean MAE for competing schemes from the literature and for the proposed
approach on synthetic and real world data. The table shows the MAE in millimeters
and the relative error between the output of the various methods and the error on input
data. Our approach and [2] are multi-frequency methods and are compared with the
highest employed frequency (60 MHz) for the relative error, instead [6] (*) is compared
with the only frequency it uses (20 MHz).

Fig. 8 shows the results of the application of the proposed approach to the
set of real world scenes. As before, it shows the input depth map from the ToF
camera at 60 MHz and the depth map resulting after the application of the
proposed approach with their corresponding error maps and ground truth infor-
mation. By looking at the images, it is possible to see how the MPI interference
is reduced by the application of the proposed approach even if some MPI error
remains in the scenes. It is possible to notice how the MPI is almost completely
removed on the vertical walls, in particular in proximity of edges between facing
surfaces. The reduction is strong also on the small objects like the sphere, the
cone or the deer even if some multi-path in proximity of boundaries remains on
these objects. On the other side the MPI error is under-estimated on surfaces
with a strong inclination, in particular the floor in the various scenes, where the
approach is able to reduce only part of the multi-path. By comparing Fig. 6
and Fig. 8 it is possible to notice how the strong MPI on these surfaces (e.g.,
the floors) is not present in the synthetic scenes. This is probably due to the
fact that reflections happening on the considered real materials are not ideally
diffuse when the light rays are strongly inclined and the ToF simulator does not
model this phenomenon. Our approach, as any other machine learning scheme,
learns from the training data and is not able to correct issues not present in the
training examples.

We compared our approach with [2] and [6] also on the real world data.
The results are in the third and fourth column of Table 1. On real data our
approach is able to reduce the error from 54.3 to 31.9 mm, i.e., to 58.7% of
the original error, a very good performance outperforming both the compared
approaches even if lower than the one achieved on synthetic data. In particular
the proposed method was able to improve the accuracy of the depth estimation
on all the considered scenes: in the worst case scene the error reduction is around
29%. Recall that the training is done on synthetic information only, as pointed
out in the visual evaluation the issues on the floor reduce the performances. The
error removal capability of [2] is limited also in this case, it removes about 6.5%



14 G. Agresti and P. Zanuttigh

Input data Output of our approach Ground
Depth Map Error Map Depth Map Error Map Truth

Fig. 8. Input depth map at 60 MHz and output of the proposed approach on same
sample real world scenes with the corresponding error maps.

of the error. The method of [6] removes about 30% of the error and gets a bit
closer to ours in this experiment, but there is still a gap of more than 10%.

7 Conclusions

In this paper we proposed a novel method for MPI removal and denoising in ToF
data. We extracted from MF-ToF data multiple clues based on depth differences
and amplitude ratios that proved to be very informative about the MPI presence.
Furthermore, by using a Coarse-Fine deep network we were able both to capture
the general structure of the MPI interference and to preserve the small details
and edges of the scene. Finally, we dealt with the critical issue of ground truth for
training data by using synthetic information. Experimental results demonstrated
how the proposed approach is able to remove the MPI interference and to remove
the ToF data noise without introducing artifacts on both synthetic and real world
scenes. Results are impressive on synthetic data and good on real data, but in
the second case there are still some limitations due to the differences between
the simulated training data and real world acquisitions. For this reason further
research will be devoted at improving the results on real data both by improving
the realism of the synthetic data and by trying multi-stage training procedures
using together synthetic and real data. Semi-supervised learning strategies and
Generative Adversarial Networks (GANs) will also be investigated.
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