RECALL: Replay-based Continual Learning in Semantic Segmentation

Andrea Maracani, Umberto Michieli, Marco Toldo and Pietro Zanuttigh

Received a contraction of the second second

Incremental Learning

Standard supervised learning

Data is acquired first, then all tasks are learnt jointly

Incremental learning

Tasks are sampled and learnt over multiple steps

Problem and Setting

Setting

- Semantic segmentation
- New classes = new tasks learned sequentially without old data

Problem

Catastrophic forgetting: the model learns the new classes but forgets the old ones

Replay Data

We use BigGAN. Brock A., et al., "Large Scale GAN Training for High Fidelity Natural Image Synthesis" ICLR 2018

 We get images from a Web crawler.

IDEA: interleave the current available data with replay samples to mitigate catastrophic forgetting

- Past samples are generated using a GAN or a Web crawler
- **Problem**: labels for replay samples need to be computed

Replay Data

We use BigGAN. Brock A., et al., "Large Scale GAN Training for High Fidelity Natural Image Synthesis" ICLR 2018

 We get images from a Web crawler.

Pascal

Our Method

VJJJ

Background Inpainting

Incremental step k:

• Labels available only for new categories

 Past classes learnt in previous steps are annotated by *pseudo-labeling*

→ Solution: background inpainting

Results – Pascal VOC2012

2021 2021

ILT: Michieli U. et al., "Incremental Learning Techniques for Semantic Segmentation", ICCVW 2019 MiB: Cermelli F. et al., "Modeling the background for incremental learning in semantic segmentation", CVPR 2020 SDR: Michieli U. et al., "Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations", CVPR 2021

Results – Pascal VOC2012

ILT: Michieli U. et al., "Incremental Learning Techniques for Semantic Segmentation", ICCVW 2019 MiB: Cermelli F. et al., "Modeling the background for incremental learning in semantic segmentation", CVPR 2020 SDR: Michieli U. et al., "Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations", CVPR 2021

Visual Results – Pascal VOC2012

- RECALL gets closer to *joint training*
- Visually similar classes are properly recognized: bus vs. train, sheep vs. cow

Conclusion

- Use of replay data to alleviate *forgetting* in class-incremental learning:
 - GAN (BigGan)
 - Web crawler (Flickr)
- Self-inpainting to handle the *background shift*
- RECALL outperforms state-of-the-art methods
 - Especially when multiple incremental steps are performed

Code available: https://github.com/LTTM/RECALL/

