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ABSTRACT

Recent years have assisted a widespreading of RF-based tracking
and mapping algorithms for a wide range of applications, ranging
from environment surveillance to human-computer interface.

This work presents a material identification system based on a
portable 3D imaging radar-based system, the Walabot sensor by Vay-
yar Technologies; the acquired three-dimensional radiance map of
the analyzed object is processed by a Convolutional Neural Network
in order to identify which material the object is made of. Experi-
mental results show that processing the three-dimensional radiance
volume proves to be more efficient thas processing the raw signals
from antennas. Moreover, the proposed solution presents a higher
accuracy with respect to some previous state-of-the-art solutions.

Index Terms— material classification, radar, convolutional neu-
ral network, 3D RF sensors, reflectance

1. INTRODUCTION

Material and object identification have been extensively investigated
in many practical applications, ranging from automotive to security
and forensic analysis. To quote some of the proposed solutions,
infrared imaging has been used to evaluate the ripeness of fruits
or other food in industry and agricolture [1, 2], hyperspectral pro-
cessing and classification have enabled a more accurate image seg-
mentation [3], and muon tomography has permitted the detection of
masked radioactive materials [4].

In this list, it is easy to notice that different types of sensors and
technologies have been used, from infrared sensors to hyperspectral
imaging. More recently, radar-based systems have been taken into
consideration for this task. In [5], a synthetic aperture radar installed
on board of an aerial vehicle is used to material classification and
image segmentation. The approach in [6] employs a millimeter-wave
portable radar system, which was designed for gesture recognition,
and adapts it to the classification of multiple materials and objects.

This paper focuses on the problem of material identification
using a portable 3D imaging radar-based system, which enables a
three-dimensional mapping of the radiated environment. To this
purpose, we employed the Walabot sensor by Vayyar Technologies
[7], which consists in a radar-based device working in the [6.3 — 8.3]
GHz bandwidth. Antennas emit a set of amplitude modulated sig-
nals and the device estimates a 3D Radio-Frequency (RF) mapping
of the radiated space.

The samples are then processed by a Convolutional Neural Net-
work (CNN) that permits to identify the material with an accuracy
of 93 %. In this task, we focused on classifying building materials,
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Fig. 1: The Vayar Technologies Walabot device. a) external case, b)
interface.

like different types of wood, bricks and mortars. This technology
could be extremely useful in the evaluation of the material state and
composition, which have direct consequences on its stability. It can
also be used in detecting fraud materials or hidden objects.

The main contribution of the current work consists in proving the
effectiveness of processing the reflectance map provided by the de-
vice firmware instead of the raw samples from the couples of trans-
mitting/receiveing antennas (like in [6]); this representation of the
environment operates an effective dimensionality reduction which
lighten the computational effort without losing accuracy. Moreover,
the work evaluates the robustness of using a Convolutional Neural
Network (CNN) in place of Random Forests for the classification
even when the acquired datasets is limited. Experimental tests were
run on different days and environments in order to verify the replica-
bility of the obtained results; in all these instances, the obtained final
accuracy was confirmed.

The structure of the paper can be summarized as follows. Sec-
tion 2 overviews the different 3D sensors and the technology they
adopt. Section 3 describes the Walabot sensor and its characteristics,
while Section 4 presents the analyzed classification strategies. Ex-
perimental results (Section 5) and the final conclusions (Section 6)
ends the work.

2. RELATED WORKS

The last decade has assisted an accelerated development of active
3D sensors, which radiates the scene to be acquired at different fre-
quencies of the electromagnetic spectrum. Some widely-adopted so-
lutions processed infrared light signals in order to estimate a depth
map of the scene [8, 9], localize hand poses [10], identify mate-
rials and characterize their states [11]. Such devices were widely
employed in Human-computer Interfaces (HCI), robotic vision, 3D
reconstruction, and many other control applications. Unfortunately,
the efficiency of these sensors was deeply affected by the noise com-
ing from external radiating source; as a matter of fact, their applica-
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Fig. 2: Example of signal I(R, 6, ¢).

tions are limited to indoor environments with a controlled lighting.

Laser-based sensors, such as the LIDAR systems [12], can eas-
ily overcome such limitations, and therefore, their applications are
nowadays investigated in many fields [13]. Unfortunately, such de-
vices only enable a geometric modelization of the scene and are still
available at an expensive cost.

Recent works have shown that RF sensors working in the SHF
spectrum band can be used for similar applications. Wi-Fi antennas
have been used to scan the 3D space, detect intruders, track people
or objects with high precision [14], analyze volumes [15]. Such so-
lutions have proved to be robust also in outdoor environment with
respect to others using visible or near-visible radiations. Moreover,
in many of the considered cases, occlusions do not prevent a correct
reconstruction of the environment.

RF localization technology has been used for decades in aircraft
tracking, security scanners and non-destructive testing and evalua-
tion. They have also been employed in the monitoring of vibration
in bridges or other large structures [16]. Similar systems have also
been used in the diagnostics of working equipment [17] or detecting
changes in the speed of the machinery [18]. Recently, the develop-
ment of smaller and cheaper devices has extended the range of pos-
sible applications, such as presence detection, recognizing walking
patterns [19], and detecting breathing and sleep patterns [20].

In addition, the technical development has allowed to build
smaller and more accurate sensors which are able to monitor and
recognize gestures[21, 22, 23]. Off-the-edge researches on Human-
Computer Interaction (HCI) are nowadays exploring the use of
millimeter-waves radar to detect and recognize small-sized motions
to control or operate different devices[24]. Anyway, it is worth
noticing that in RF systems the acquired signal depends on the
shapes of objects, as well as on the material. This fact has suggested
the idea of exploiting such sensors to characterize the composi-
tion of the objects. To the best of our knowledge, few works have
been published on the subject. Among the most recent, the solu-
tion in [6] adopts a millimeter-wave radar to sense materials and
body parts. The approach presented in this paper aims at improving
such approach by employing a 3D spatialization of the signals and
classifying it using a Deep Neural Network architecture.

3. THE WALABOT SENSOR

In our approach we adopted the radar-based RF sensor Walabot
Pro[7], which senses the environment by transmitting, receiving
and recording signals from an array of linearly polarized broad-
band antennas. This device is a wide band MIMO radar and it is
equipped with 18 antennas, 4 of them are used to transmit amplitude
modulated signals in the frequency range [6.3, 8.3] GHz (European

Symmetric padding

of the input
‘\\\\ Max
I P .

21 ) X
21 7 5
7 5

21 21
5 128

128 128

o
=
Q
]
>
=
)
Q
@
Q
N

Fig. 3: Structure of the adopted CNN. Solid lines denote data ten-
sors, dashed lines denote CNN kernels.

model), and the remaining 14 are used as receivers. The average
transmit power is 25 pW and so it can be used safely in public
places without restrictions.

The transmitting and receiving antennas are coupled generating
40 signals which are extracted by using the Wallabot SDK. Such
system analyzes the received data via a beamforming algorithm and
estimates reflected signal intensity at different points of the radiated
space. The radiated space is sampled following a spherical coordi-
nate reference system; each sample is rescaled and quantized into an
8-bits integer number.

As a matter of fact, different types of information can be ac-
quired by the device. The implemented API permits acquiring the
raw signals associated to the 40 couples of transmitting/receiving an-
tennas, which are sampled at frequency of 100GHz and represented
by arrays of 8192 values in double precision. In this work, we will
denote such signals as sq(t), where a = 0, ..., 39 is the index of
the couple of antennas and ¢ = 0, ...,8191 is the sampling instant.
Alternatively, the firmware of the device can estimate an electromag-
netic characterization of the radiated volume by processing the sam-
ples sq(t) and computing the amount of power reflected by a three-
dimensional point. Such an information is formatted by the electro-
magnetic reflectance signal I(R, 6, ¢), which reports the reflectance
(represented by an 8 bits integer) of a point localized at radial co-
ordinates (R, 0, ¢). An example of the reflectance signal I(R, 6, ¢)
is reported in Fig.2. In the adopted set-up, the signal I(R, 0, @) is
sampled with ¢, 0 varying in the range [—10°,10°] and R varying
in the range [1, 5] cm with sampling step 1. By using these acquisi-
tion parameters, it is possible to extract just the local and superficial
data from the target material, trying to reduce possible interferences
coming form the environment. As a results, I(R, 0, ¢) is made of
21 x 21 x 5 samples represented by 8-bits integers.

In the following sections, we will show that, differently from
[6], it is possible to classify materials processing the reflectance
I(R,0,¢) in place of sq(t). Experimental results show that
I(R,0,¢) permits representing the acquired signal in a compact
form without losing classification accuracy.

4. MATERIAL IDENTIFICATION STRATEGY

As it was anticipated, signals s, (¢) and I(R, 6, ¢) can be used to
identify the radiated material. To this purpose, two different machine
learning strategies have been used and compared.

4.1. Random Forest approach

Following the approach in [6], we designed an all-vs-all ma-
terial classifier using the Random Forest algorithm. Data are
formatted into 1D arrays s = vec[so(t)|s1(t)]...|ss0(t)] and
r = vecl(R,0,¢). The acquired arrays are partitioned into 30
different random subsets; for each subset, a classification tree is
generate. Classification results are then combined using a majority



Table 1: Acquired materials and datasets

Materials Datasets

ID material ID material ID labels
a polystyrene b cement blocks D1 h,i,j,k
c leccese stone d extr. solava red D2 all

e desk Qe f desk Ae D3 h,i,j,k,1
g stab. cement h wall D4 h,i,j,k,1
i floor j woodl

k wood?2 1 glass

voting approach. Considering that the size of arrays s and r are
quite large (approximately 2.6MB and 2.2kB, respectively), using
some dimensionality reduction strategies can be useful. To this pur-
pose, we considered two different types of projections IIpca and
IIs v pE, which were obtained from Principal Component Analysis
(PCA) [25] and supervised Neighbourhood Preserving Embedding
(SNPE) [26], respectively. The resulting arrays r' = II,r and
s’ = II5s, where d = {PCA, sNPE}, are processed by the Random
Forest classifier in the training and testing phases.

As for the tensor I(R, 0, ¢), it is possible to generate a more
accurate classifier using CNN.

4.2. The proposed solution based on Deep Learning

Recent years have assisted to a widespread use of Deep neural
networks (DNNs) in several classification problems. More specif-
ically, whenever dealing with signals, Convolutional Neural Net-
works (CNNs) have proved to be significantly effective for their
capability of processing large amounts of correlated inputs with a
correspondigly-smaller amount of parameters to be optimize if com-
pared to other DNN architectures. For these reasons, they have been
largely employed in computer vision applications among which
some examples are depth estimation from a single color image, flow
motion estimation and semantic segmentation [27, 28, 29, 30].

In the proposed all-vs-all material classification system, we de-
cided to use a CNN which processes the 3D map I (R, 0, ¢) captured
by the Walabot device and defined in Section 3. CNNs are a good
choice for this task since they are able to internally extract features
related to the data spatial neighbourhood without requiring the huge
number of parameters of fully-connected networks. Due the rela-
tively small amount of labelled data, we used k-fold cross-validation
in order to find a structure for the network that was nor to complex
(incurring in over-fitting), nor to simple (incurring in under-fitting).

Different CNN structures were tested ending up with the con-
figuration reported in Figure 3. The selected network contains a
stack of 3 convolutional layers, each one followed by a ReLU non-
linearity, and a fully-connected layer that is used as the output layer.
The convolutional layers have 128 filters each of window size 3 x 3
pixels. Only the first layer uses a symmetric padding of 1 pixel on
the input data and it is followed by a pooling layer with window 3 x 3
and stride 3. The last layer is a fully-connected layer composed by
12 nodes. The output of this layer is fed to a softmax which produces
a probability distribution over the 12 class labels.

Made exception for the first layer, padding was not used for
the other layers in order to reduce the overall dimension step by
step.This structure of the CNN was sufficient to reliably classify the
tested material as we will show in Section 5.

The network has been trained in order to minimize the softmax
cross entropy between the output of the CNN and the class labels.
We used the Stochastic Gradient Descent optimization with momen-
tum 0.9 and minibatches of size 32. The convolutional kernels were
initialized with Xavier’s procedure [31]. The learning rate was se-
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Fig. 4: Classification accuracy using I(R, 0, ¢) and s,(t). Vertical
axis reports the accuracy on D1, horizontal axis reports the number
of features extracted with PCA or sNPE.

lected equal to 5 - 10™2 for the first 10 epochs and then it was re-
duced by the 20% every 10 epochs. The network was trained for a
total of 200 epochs. These hyperparameters of the CNN were em-
pirically selected maximizing the validation accuracy on the k-fold
cross-validation procedure applied on the training set. When the sys-
tem hyper-parameters have been chosen, the complete training set
has been used for the training. The network has been implemented
using the MatConvNet framework [32].

5. EXPERIMENTAL RESULTS

In our experimental tests, we evaluated the classification accuracy in
identifying different building materials. To this purpose, we acquired
different datasets which will be described in the following section.

5.1. Data collection

In order to verify the effectiveness of the described classifiers, we
collected four different datasets (D1, D2, D3, D4) with different ma-
terials, which are reported in Table 1. Dataset D1 consists in 4 mate-
rial classes, namely wall, glass, woodl, wood2,! which are made of
about 100 acquisitions of signals s, (t) and I(R, 0, ¢). The acquisi-
tions D1 were used to evaluate the performances using s or r.

These classes were extended in dataset D2, including two dif-
ferent desks, different types of bricks and mortars, plastic material,
and composed materials (floor). The final datasets consists of 12
different material types, which were acquired on the same day.

Dataset D3 and D4 consists in 5 of the materials contained
in D2 (wall, floor, woodl, wood2 and glass) but captured on dif-
ferent days and instances. This ensured the reproducibility of
the reported results and permitted evaluating the robustness of
the approach. For each acquisition the standard device calibra-
tion routine was disabled. The datasets are publicly available at
http://lttm.dei.unipd.it/paper_data/Wallabot_
material_classification.

5.2. Input data evaluation

A first set of experiments was performed to evaluate the effectiveness
of using I(R, 0, ¢) instead of sq(¢). To this purpose, we evaluated
the classification accuracy of Random Forest classifier on dataset
D1: 70 % of acquired samples are used for training, while the re-
maining 30 % of left samples are used in validation. Classification
performance was evaluated using either I(R, 0, ¢) or sq(t), which

IClasses woodl and wood?2 are two different types of plywood, which
present a different level of density
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Fig. 5: Confusion matrix for the classification with CNN (a) and Random Forest (b) on D2 dataset. Column labels report the actual class, row

label the predicted one.

were preprocessed by the dimensionality reduction strategies PCA
and sNPE in order to reduce the size of feature arrays to Nr. The ob-
tained results (for different Nr) are reported in Fig. 4, together with
the classification results on the original data. It is possible to notice
that using I (R, 0, ¢) does not generate significant differences in ac-
curacy, although the entailed computational complexity and amount
of memory decrease significantly. for such reasons, in the following
we will employ I(R, 0, ¢) only.

5.3. Evaluation of the classification strategy

The second set of experiments were performed to evaluate the ac-
curacies of the Random Forest and CNN classifiers on the task of
discriminating the 12 materials contained in D2. This dataset is par-
ticularly challenging since it contains materials that are similar to
each other, e.g. different types of stones and wooden plates. D2
has been split in a training (70%) and a test set (30%). The CNN
hyperparameters (described in Section 4.2) have been selected by k-
fold cross-validation on the extracted training set (both CNN and the
Random Forest have been trained on this).

Fig. 5(a) and 5(b) report the confusion matrix respectively for
the CNN and Random Forest classifications on the test set. The CNN
is able to outperform with a mean accuracy of 93.3% the Random
Forest classifier that has a mean accuracy of 89.5%. The Random
Forest confuses some classes as the couple (stabilized cement, ce-
ment block) and (wall, floor), instead the CNN is more robust to the
problem of class mismatch.

5.4. Evaluation of the performance reproducibility

In order to test the reliability of the proposed material classification
system, we tested the Random Forest and CNN trained on the train-
ing set extracted from D2 on the datasets D3 and D4. These datasets
contain 5 materials also present in D2 but acquired on different days.

As it is possible to observe from Fig. 6, both the Random For-
est and CNN classifiers share stable performances when they are
tested on new samples, in particular the CNN outperforms the Ran-
dom Forest classifier obtaining a mean accuracy of 94% and 92.6%
respectively on D3 and D4. The Random Forest classifier has mean
accuracy of 92.3% and 90.9% respectively on D3 and D4.

6. CONCLUSIONS

The paper presented a material classification strategy based on the
Walabot RF sensor. The acquired three-dimensional reflectance vol-
ume is processed by a CNN in order to identify the material of
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Fig. 6: Results on datasets D3 (first row) and D4 (second row) for
CNN (first column) and RandomForest (second column). Label w
stands for other materials not used as labels. Column labels report
the actual class, row label the predicted one.

the analized object. Experimental tests were run on different ob-
ject sets in different days and environments in order to verify the re-
producibility of the approach, and the obtained results show a good
detection accuracy even on materials whose characteristics are very
close. Future works will be oriented to the reconstruction of accurate
object shapes.
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