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Abstract. This paper proposes a joint color and depth segmentation
scheme exploiting together geometrical clues and a learning stage. The
approach starts from an initial over-segmentation based on spectral clus-
tering. The input data is also fed to a Convolutional Neural Network
(CNN) thus producing a per-pixel descriptor vector for each scene sam-
ple. An iterative merging procedure is then used to recombine the seg-
ments into the regions corresponding to the various objects and surfaces.
The proposed algorithm starts by considering all the adjacent segments
and computing a similarity metric according to the CNN features. The
couples of segments with higher similarity are considered for merging.
Finally the algorithm uses a NURBS surface fitting scheme on the seg-
ments in order to understand if the selected couples correspond to a
single surface. The comparison with state-of-the-art methods shows how
the proposed method provides an accurate and reliable scene segmenta-
tion.

Keywords: Segmentation, Depth, Color, Kinect, NURBS, Deep Learn-
ing, CNN

1 Introduction

The introduction of depth cameras in the consumer market has opened the way
to novel algorithms able to exploit depth in order to tackle classical challenging
computer vision problems. Among them segmentation has always been a critical
issue despite a huge amount of research devoted to this problem since it is
an ill-posed problem and the information content in color images is often not
sufficient to completely solve the task. The 3D representation of the acquired
scene contained in depth data is very useful for this task and recently various
approaches combining it with color information have been proposed.

Among the various segmentation techniques, one of the best performing so-
lutions is normalised cuts spectral clustering [25]. This approach can be easily
extended to the joint segmentation of image and depth data by feeding to the
clustering scheme multi-dimensional vectors containing both kinds of informa-
tion [6]. In this way, a relatively reliable segmentation can be obtained but, since
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the approach has a bias towards segments of similar sizes, it is often difficult to
properly segment all the objects and at the same time avoid an over-segmentation
of the scene.

The idea exploited in this work is to start from an over-segmentation per-
formed with spectral clustering and then exploit an iterative region merging
scheme in order to obtain the final segmentation. The key problem of deciding
which segments must be merged is solved with the combined use of two clues.
The first is a similarity index between segments computed by comparing the
descriptors produced by a Convolutional Neural Network. The second has been
derived from [22] and is based on the accuracy obtained by fitting a Non-Uniform
Rational B-Spline (NURBS) model on the union of the two segments and com-
paring the accuracy of the fitting with the one obtained on each of the two
merged regions alone. If the accuracy remains similar the segments are probably
part of the same surface and the merging is accepted, otherwise it is discarded.

The paper is organized in the following way: a review of related works is pre-
sented in Section 2. Section 3 introduces the general architecture of the proposed
algorithm. The over-segmentation step is described in Section 4 while Section 5
presents the similarity analysis based on deep learning. Then the employed re-
gion merging algorithm is presented in Section 7. The last two sections contain
the results (Section 8) and the conclusions (Section 9).

2 Related Works

The idea of using also the information from an associated depth representation
to improve segmentation algorithm performances has been exploited in various
recent scene segmentation schemes, a review of this family of approaches is con-
tained in [32]. Clustering techniques can easily be extended to joint depth and
color segmentation by modifying the feature vectors as in [2, 30, 5]. A segmen-
tation scheme based on spectral clustering able to automatically balance the
relevance of color and depth clues has been proposed in [6].

Region splitting and growing approaches have also been considered. In [8] su-
perpixels produced by an over-segmentation of the scene are combined together
in regions corresponding to the planar surfaces using an approach based on Rao-
Blackwellized Monte Carlo Markov Chain. The approach has been extended to
the segmentation of multiple depth maps in [27]. The top down approach (region
splitting) has been used in [21] where the segmentation is progressively refined
in an iterative scheme by recursively splitting the segments that do not repre-
sent a single surface in the 3D space. Hierarchical segmentation based on the
output of contour extraction has been used in [13], that also deals with object
detection from the segmented data. Another combined approach for segmenta-
tion and object recognition has been presented in [26], that exploits an initial
over-segmentation exploiting the watershed algorithm followed by a hierarchical
scheme. A joint clustering method on the color, 3D position and normal informa-
tion followed by a statistical planar region merging scheme has been presented
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in [17] and in the refined version of the approach of [16]. Finally dynamic pro-
gramming has been used in [28] to extract the planar surfaces in indoor scenes.

Machine learning techniques have been used specially for the task of semantic
segmentation where a label is also associated to each segment. In [24] a Markov
Random Fields superpixel segmentation is combined with a tree-structured ap-
proach for scene labeling. Conditional Random Fields have been employed in
[7] together with mutex constraints based on the geometric structure of the
scene. Deep learning techniques and in particular Convolutional Neural Net-
works (CNN) have also been used for this task [19, 4, 20]. For example a mul-
tiscale CNN has been used in [4] while the method of [20] is based on Fully
Convolutional Networks. Another approach based on deep learning is [14], that
exploits a CNN applied on features extracted from the geometry description.
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Fig. 1. Overview of the proposed approach

3 General Overview

The proposed algorithm can be divided into three main steps as depicted in
Fig. 1. The color image and the depth map are firstly converted into a set of
9D vectors containing the 3D position, the orientation information and the color
coordinates in the CIELab color space of each sample. Then we perform an
over-segmentation of the scene based on the joint usage of the three sources of
information inside a spectral clustering framework derived from [6] (see Section
4). In parallel, the color and orientation data are also fed to a CNN classifier
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that computes a vector of descriptors for each pixel. The descriptors are then
aggregated inside each segment in order to produce a single descriptor for each
segmented region. The final step is an iterative region merging procedure. This
stage starts by analyzing the segmentation and computing an adjacency map
for the segments, where two segments are considered adjacent if they touch each
other and their properties are similar on the common contour. The couples of
adjacent segments are sorted on the basis of the similarity of their descriptors
computed by the CNN classifier and the couples with a similarity below a thresh-
old are discarded. Starting from the most similar couple a parametric NURBS
surface is fitted over each of the two segments. The same model is fitted also
over the merged region obtained by fusing the two segments. Similarly to [22],
the surface fitting error is computed and compared with the weighted average
of the fitting error on the two merged pieces. If the error on the merged region
is smaller (a hint that the two regions are part of the same surface) the merging
operation is accepted, if it increases (i.e., they probably belong to two different
surfaces), the merging is discarded. The procedure is repeated iteratively in a
tree structure until no more merging operations are possible.

4 Over-segmentation of Color and Depth Data

The proposed method takes as input a color image with its corresponding depth
map. For each pixel with a valid depth value pi, i = 1, . . . , N (where N is
the number of valid pixels) it builds a 9-dimensional vector p9D

i containing
the color, spatial and orientation information. More in detail, the first three
dimensions are the L(pi), a(pi), b(pi) components containing the color view in-
formation converted to the CIELab perceptually uniform space. The 3D coordi-
nates x(pi), y(pi), z(pi) and the surface normals nx(pi), ny(pi), nz(pi) associated
to each sample are then computed exploiting the calibration information. The
over-segmentation is performed by clustering the multi-dimensional vectors con-
taining the color, the position in the 3D space and the orientation information
associated to the samples [6, 22].

The clustering algorithm must be insensitive to the scaling of the point-
cloud geometry and needs geometry, color and orientation to be into consistent
representations. For these reasons, the geometry components are normalized by
the average σg of the standard deviations of the point coordinates, obtaining
the vectors [x̄(pi), ȳ(pi), z̄(pi)]. Following the same rationale, the normal vectors
[n̄x(pi), n̄y(pi), n̄z(pi)] are computed by normalizing the three components of the
orientation by the average σn of their standard deviations. Color information
vectors [L̄(pi), ā(pi), b̄(pi)] are also obtained by normalizing color data with the
average σc of the standard deviations of the L, a and b components. Finally,
a 9D representation is built from the above normalized vectors, such that each
point of the scene is represented as

p9D
i = [L̄(pi), ā(pi), b̄(pi), x̄(pi), ȳ(pi), z̄(pi), n̄x(pi), n̄y(pi), n̄z(pi)], i = 1, ..., N.

(1)
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Normalized cuts spectral clustering [25] optimized with the Nyström method
[11] is then applied to the 9D vectors in order to segment the acquired scene.
Notice that the parameters of the clustering algorithm are set in order to produce
a large number of segments that will later be merged in order to obtain the final
solution by the method of Section 7.

5 Classification with Deep Learning

In order to be able to decide which segments from the over-segmentation need to
be recombined we employed a machine learning stage based on a Convolutional
Neural Network (CNN). The goal of this step is to obtain a fundamental clue
to drive the merging operation described in Section 7 together with the NURBS
surface fitting approach derived from [22]. The idea is to exploit the output of a
CNN trained for a semantic segmentation task in order to produce a pixel-wise
higher-level description of the input images, and use this information to compute
a similarity measure between adjacent segments. The merging strategy described
in Section 7 exploits the proposed similarity measure both in the selection of
which adjacent segment pairs are going to be merged as well as in determining
the order of the selection of the candidate pairs for the merging operations.

Both color and normal information is used as input to the CNN. Normalized
color and normal components computed in Section 4 are first combined into 6D
vectors representing each point of the scene as

pcni = [L̄(pi), ā(pi), b̄(pi), n̄x(pi), n̄y(pi), n̄z(pi)], i = 1, ..., N. (2)

Then, a six channel input image is produced for each scene in the dataset by
arranging the vectors over the image pixels lattice.

A multi-scale architecture [9] is used to achieve a greater expressiveness with-
out increasing the number of network parameters. Each input image is fed to the
network at three different scales, both to account for the varying size at which
similar objects may appear in the scene, and to take advantage of increasingly
larger contexts. An overview of its structure is shown in Figure 2.

Similarly to [9, 3], the network can be divided in two parts. In the first part a
local representation of the input is extracted by applying a sequence of convolu-
tional layers sharing their weights across the three scales. Specifically, the three
input scales are feed-forwarded through three convolutional layers (denoted with
CONV in Fig. 2). The first two convolutional layers are followed by a hyperbolic
tangent activation function (TANH) and a max-pooling (MAXP) layer, while
the third one is applied as a simple bank of linear filters, producing the three
outputs corresponding to the three scales. The outputs are then upsampled and
concatenated to provide for each pixel a vector of feature descriptors. The second
part of the network is composed by two fully-connected layers (FCONN), with
hyperbolic tangent and soft-max (SMAX) activation functions respectively.
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Fig. 2. Architecture of the Convolutional Neural Network

Input images are fed to the network at three different scales, namely 320×240,
160×120 and 80×60, both to account for the varying size at which similar objects
may appear in the scene, and to take advantage of increasingly larger contexts.

In our experiments the three convolutional layers have 36, 64 and 256 filters
respectively, all filters being 7 × 7 pixels wide, while the fully-connected layers
have 1024 and 15 units respectively. The filters in the first convolutional layer are
divided into 6 groups and each group is connected to one of the 6 input channels
separately. In order to ease the convergence of the first layer filter weights, local
contrast normalization is applied to each channel independently.

The network is trained in order to assign one out of the 15 labels to each
pixel in the input image. Specifically, we clustered the 894 categories from the
ground truth provided by [12] into 15 classes similarly to [3, 31, 18]. As in [9] we
split the training process into two separate steps. The filter weights of the three
convolutional layers are first trained separately by applying a simple linear clas-
sifier to the output of the first part of the network, with soft-max activation and
multi-class cross-entropy loss function. Next, the weights and biases of the last
two fully-connected layers are trained while keeping the convolutional weights
as calculated in the previous step fixed. Again, the multi-class cross-entropy loss
function is minimized.

Rather than the final predicted labels, the output of the soft-max activation
function in the last fully-convolutional layer is considered in order to compute
the descriptors used for the similarity measure between any two segments. The
output of the soft-max, a 3D array of size 80× 60× 15, is linearly interpolated
to the size of the input image so that a descriptor vector ci = [c1i , . . . , c

15
i ]

is associated to each each pixel pi. As each descriptor vector has non-negative
elements summing up to one, it can be seen as a discrete probability distribution
function (PDF) associated to the pixel. The PDF si = [s1i , . . . , s

k
i ] associated to

a segment Si can be computed simply as the average of the PDFs of the pixels
belonging to the segment, i.e.,

si =

∑
j∈Si

cj

|Si|
. (3)
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Given two segments Si and Sj , their similarity can be estimated by comparing
their descriptors si and sj , which are actually two PDFs. An effective approach
in order to compare two PDFs is to use the Bhattacharrya coefficient

bi,j =
∑

t=1,..,k

√
stis

t
j . (4)

An example of the output of this approach is shown in Fig. 3. The color
of the boundary between each couple of segments in the figure is proportional
to the corresponding bi,j value. Notice how in Fig. 3a the boundaries between
different objects correspond to low values of the coefficient, while boundaries
between parts of the same object that need to be merged correspond to high bi,j
values. In Fig. 3b it is possible to notice how the remaining boundaries at the
end of the procedure of Section 7 typically correspond to low similarity values.

a) b)

Fig. 3. Computation of bi,j on a sample scene (i.e., the one in the sixth row of Fig. 5):
a) bi,j values on the initial over-segmentation; b) bi,j values on the final result after all
the merging steps. The boundary of the segments have been colored proportionally to
the similarity between the two touching segments (black corresponds to low bi,j values
and white to large ones)

6 Surface Fitting on the Segmented Data

In order to evaluate if each segment corresponds to a single scene object we
approximate it with a Non-Uniform Rational B-Spline (NURBS) surface [23].
By using this approach we are able to provide an appropriate geometric model
for quite complex shapes, unlike competing approaches [28, 27] that are limited
to planar surfaces.

A parametric NURBS surface is defined as

S(u, v) =

∑n
i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,jPi,j∑n

i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,j

, (5)
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where Pi,j are the control points, wi,j the corresponding weights, Ni,p the
univariate B-spline basis functions, and p, q the degrees in the u, v parametric
directions respectively. We set the degrees in the u and v directions equal to 3
and the weights all equal to one, thus our fitted surfaces are non-rational (i.e.,
splines). The number of surface control points are the degrees of freedom in our
model and we adaptively set it depending on the number of input samples in
the considered segment. This is necessary to prevent the fitting accuracy to be
biased in favor of smaller segments [22]. Finally, by using Eq. (5) evaluated at
the depth lattice points and equated to the points to fit (see [22] for details),
we obtain an over-determined system of linear equations and we solve it in the
least-squares sense thus obtaining the surface control points.

7 Region Merging Procedure

The final step of the proposed approach is the merging phase that recombines
the large number of segments produced by the over-segmentation into a smaller
number of segments representing the various structures in the scene. The proce-
dure is summarized in the bottom part of Fig. 1 and in Algorithm 1.

Firstly the segments are analyzed in order to detect the couples of close
segments that are candidate to be joined. For this task an approach similar to
[22] is used in order to build an adjacency matrix storing for each couple of
segments whether they are adjacent or not. Two segments are considered as
adjacent if they satisfy the following conditions:

1. They must be connected on the lattice defined by the depth map.
2. The depth values on the shared boundary must be consistent. In order to

perform this check, for each point Pi in the shared boundary CC we compute
the difference ∆Zi between the depth values on the two sides of the edge.
The difference must be smaller than a threshold Td for at least half of the
points in the shared boundary, i.e.,:

|Pi : (Pi ∈ CC) ∧ (∆Zi ≤ Td)|
|Pi : Pi ∈ CC |

> 0.5 (6)

3. The color values must also be similar on both sides of the common contour.
The approach is the same used for depth data except that the color difference
in the CIELab space ∆Ci is used instead of the depth value. More in detail,
being Tc the color threshold:

|Pi : (Pi ∈ CC) ∧ (∆Ci ≤ Tc)|
|Pi : Pi ∈ CC |

> 0.5 (7)

4. Finally the same approach is used also for normal data. In this case the angle
between the two normal vectors ∆θi is compared to a threshold Tθ:

|Pi : (Pi ∈ CC) ∧ (∆θi ≤ Tθ)|
|Pi : Pi ∈ CC |

> 0.5 (8)



Scene Segmentation Driven by Deep Learning and Surface Fitting 9

If all the conditions are satisfied the two segments are marked as adjacent (for
the results we used Td = 0.2 m, Tc = 8 and Tθ = 4◦). For more details on
this step see [22]. Notice that the evaluation of the color, depth and orientation
consistency on the couples of close segments can be skipped in order to simplify
and speed-up the approach, but it allows to slightly improve the performances
of the proposed method.

At this point the algorithm analyzes the couples of adjacent segments and
computes the similarity between the two segments in each couple as described
in Section 5.

The next step consists in sorting the couples of adjacent segments based on
the bi,j values, that is, according to how the two segments were estimated to be
similar during the machine learning stage. Furthermore the couples of segments
with a similarity value bi,j below a threshold Tsim are discarded and they will not
be considered for the merging operations (for the results we used Tsim = 0.75).
The rationale behind this is to avoid merging segments with different properties
since they probably belong to distinct objects and parts of the scene.

The algorithm then selects the couple with the highest similarity score. Let
us denote with Si∗ and Sj∗ the two segments in the couple and with Si∗∪j∗

the segment obtained by merging the two segments. A NURBS surface is fitted
on each of the two regions i∗ and j∗ (see Section 6). The fitting error, i.e., the
Mean Squared Error (MSE) between the actual surface and the fitted surface, is
computed for both segments thus obtaining the values ei∗ and ej∗ . The fitting
error ei∗∪j∗ on segment Si∗∪j∗ is also computed and compared to the weighted
average of the errors on S∗i and S∗j :

ei∗ |Si∗ |+ ej∗ |Sj∗ | > ei∗∪j∗(|Si∗ |+ |Sj∗ |) (9)

If the fitting accuracy is improved, i.e., the condition of Equation (9) is satis-
fied, the two segments are merged together, otherwise the merging operation is
discarded. If the two segments S∗i and S∗j are merged, all the couples involving
them are removed from the list LS . The adjacency information is then updated
by considering the union Si∗∪j∗ as adjacent to all the segments that were pre-
viously adjacent to any of the two segments. The descriptor si∗∪j∗ associated
to Si∗∪j∗ is computed using Equation (3) and the similarity score is computed
for all the newly created couples involving the segment Si∗∪j∗ created by the
merging operation. Finally the new couples are inserted in the list LS at the po-
sitions corresponding to their similarity score (provided their similarity is bigger
than Tsim, otherwise they are discarded). The algorithm then selects the next
couple in the sorted list and the procedure is repeated until no more segments
can be considered for the merging operation. The procedure is summarized in
Algorithm 1 and its progress on a sample scene is visualized in Fig. 4. The se-
quence of merging steps on some scenes is also shown in the videos available at
http://lttm.dei.unipd.it/paper_data/deepnurbs .
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Algorithm 1 Merge algorithm
Compute LS (list of the segments)
For each segment Si compute the set Ai of the adjacent segments.
Create list of couples of adjacent segments Ai,j

For each couple of adjacent segments i and j compute their similarity bi,j according
to Equation (4)
Sort the list of adjacent couples Ai,j according to bi,j
Discard the couples with a score bi,j < Tsim

for all the couples in Ai,j do
Compute the fitting error on the merged segment Si∪j

Check if the threshold of Equation (9) is satisfied
if Equation (9) is satisfied then

Remove all the couples involving Si and Sj from Ai,j

Compute the adjacent segments Sk to Si∪j

Compute Ai∪j,k for all the adjacent segments
Insert the new segments in Ai,j and sort

end if
Move to next entry in Ai,j

end for

Initial Segmentation Iteration 5 Iteration 10 Iteration 15

Iteration 20 Iteration 25 Iteration 30 Final Result

Fig. 4. Example of the merging procedure on the scene of Fig. 5, row 6. The im-
ages show the initial over-segmentation, the merging output after 5, 10, 15, 20, 25, 30
iterations and the final result (iteration 34). (Best viewed in color)
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8 Experimental Results

In order to evaluate the performances of the proposed method we tested it on the
NYU-Depth V2 dataset (NYUDv2) [26]. This dataset has been acquired with
the Kinect and contains 1449 depth and color frames from a variety of indoor
scenes. The updated versions of the ground truth labels provided by the authors
of [12] has been used.

The dataset has been split in two parts using the subdivision of [12]. In order
to get the results on the full dataset we performed two independent tests. In the
first test the CNN has been trained using the first part with the corresponding
ground truth labels. The trained network has then been used to compute the
descriptors for the scenes in the second part. In the second test we swapped the
train and test sets and performed the same procedure. The semantic classification
is not the main target of this work, however notice that the proposed deep
learning architecture, if used for classification purposes, is able to obtain an
average mean pixel accuracy on the dataset of 52.8% that is similar to the
results reported in [3]. To mitigate the effect of overfitting the dataset has been
expanded by randomly rotating each sample by an angle between −6 and 6
degrees. Moreover, quadratic regularization with coefficient 0.001 has been used.
The network weights have been updated using stochastic gradient descent, with
initial learning rate equal to 0.01 and constant decay by a factor 0.5 every 15
epochs.

Table 1 shows the comparison between our approach and some state-of-the-
art approaches on this dataset (for the other approaches we collected the results
from [17] and [22]). The compared approaches are the clustering and region
merging method of [17], the MRF scene labeling scheme of [24], that exploits
Kernel Descriptors and SVM for machine learning, a modified version of [10]
that accounts also for geometry information, the dynamic programming scheme
of [28], the clustering-based approach of [6] and the region merging scheme of
[22]. Notice that the latter is also based on over-segmentation and NURBS fitting
but it does not have a machine learning stage and it uses a different merging
procedure. The comparison between the two approaches can be a hint of the
improvement provided by the use of the CNN descriptors.

The results have been evaluated by comparing the results with ground truth
data using two different metrics, i.e., the Variation of Information (VoI) and the
Rand Index (RI). For a detailed description of these metrics see [1], notice that
for the VoI metric a lower value is better while a higher one is better for RI. The
average VoI score of our method is 1.93. According to this metric our approach
is the best among the considered ones with a significant gap with respect of all
the competing approaches. If the RI metric is employed the average score is 0.91.
This value is better than the one of the schemes of [10], [28], [6], [22], [17] and [24]
and is exactly the same of the best competing approach, i.e., [16]. Furthermore
our approach does not assume the presence of planar surfaces thanks to the
NURBS surface fitting scheme, while some competing ones (e.g., [17], [16] and
[28]) strongly rely on this clue that gives very good results on the NYUDv2



12 L. Minto, G. Pagnutti, P. Zanuttigh

dataset where most of the surfaces are planar, but reduces the capability of the
approaches to generalize to different kind of scenes with non-planar surfaces.

Table 1. Average values of the VoI and RI metrics on the 1449 scenes of the NYUDv2
dataset for the proposed approach and for some state-of-the-art approaches from the
literature

Approach VoI RI
Hasnat et al (2014) [17] 2.29 0.90
Hasnat et al (2016) [16] 2.20 0.91

Ren et al [24] 2.35 0.90
Felzenszwalb et al [10] 2.32 0.81

Taylor et al [28] 3.15 0.85
Dal Mutto et al [6] 3.09 0.84
Pagnutti et al [22] 2.23 0.88

Proposed method 1.93 0.91

Some visual results for the proposed approach are shown in Fig. 5 while some
videos showing the merging steps leading to the presented results are available
at http://lttm.dei.unipd.it/paper_data/deepnurbs . By looking at the images
it is possible to see how the approach is able to efficiently deal with different
challenging situations and to various scene types. The initial over-segmentation
typically divides the background and the large objects in several pieces but
they are properly recombined by the proposed approach, this is due to the CNN
descriptors that allow to recognize which segments belong to the same structure.
Notice how the contours of the objects are well defined and there are not noisy
small segments in proximity of edges as in other approaches. The approach is
also able to correctly segment most of the objects in the scene even if a few
inaccuracies are present only on very small objects.

The proposed method has been implemented using the Theano deep learning
library [29]. On a standard desktop PC (an i7-4790 with 16 GB of Ram) the
segmentation of an image with the corresponding depth map takes less than
two minutes. More in detail, the initial over-segmentation takes most of the
time (i.e., 87 s), but notice that it can be easily replaced with other super-pixel
segmentation techniques. The CNN classification takes only about 3.7 s on the
CPU. Finally the merging procedure of Section 7 requires around 20 s. Notice
that the current implementation has not been optimized, in particular we used
the GPU only for the training of the CNN but not for the classification and
segmentation tasks.

9 Conclusions and Future Work

In this paper we proposed a novel joint color and depth segmentation scheme.
An iterative merging procedure starting from an initial over-segmentation is
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Scene Initial Over-Segmentation Final Result

Fig. 5. Segmentation of some sample scenes from the NYUDv2 dataset. The figure
shows the color images, the initial over-segmentation and the final result for scenes 72,
330, 450, 846, 1105, 1110 and 1313
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employed. The key idea consists in controlling the merging operation by using
together geometrical clues and an estimation of the segments similarity computed
with Convolutional Neural Networks. The adopted surface fitting comparison
makes it possible to avoid merging segments belonging to different surfaces,
and the proposed similarity metric based on the comparison of the descriptors
computed by the CNN proves to be reliable. As shown by experimental results,
our method achieves state-of-the-art performances on the challenging NYUDv2
dataset.

Further research will explore the performances of the proposed approach in
the semantic segmentation task. The exploitation of surface fitting information
into the CNN classifier will also be considered. Finally different deep learning
architectures including Fully Convolutional Networks [20] and hypercolumns [15]
will be tested into the proposed framework.

Acknowledgments. We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Tesla K40 GPU used for the training of the
CNN.
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